Characterization and Performance Evaluation of SiPM-Based Gamma and Neutron Detectors for Nuclear Science Applications

Shanyn Hart 1,2

Supervisors: Prof. Steve Peterson¹, Dr. Luna Pellegri^{2,3}, Dr. Pete Jones²

¹ University of Cape Town, South Africa

² iThemba LABS, South Africa

³ University of the Witwatersrand, South Africa

DEPARTMENT OF PHYSICS UNIVERSITY OF CAPE TOWN IYUNIVESITHI YASEKAPA • UNIVERSITEIT VAN KAAPSTAD

Metrological and Applied Sciences University Research Unit

Detector Assemblies

Detector

Assembly

LaBr₃:Ce - SiPM

Srl₂:Eu - SiPM

Cs₂LiYCl₆ - SiPM

Two of each detector type in the cuboid (14 x 14 x 25.4 mm³) aluminum housing geometry, coupled to a 2x2 MicroFJ-60035-TSV SiPM array and TMP451 temperature sensor packed in an AI canister. Obtained from CapeScint (MA,USA).

,		
Typical Resolution		
3.0% at 662 keV	4	
3.0% at 662 keV		
4.5% at 662 keV	39±1	

SiPM: Microcell size: 35 µm Total number: 18980 microcells

NRF LABS

Compton Camera—A Review. Sensors (Basel, Switzerland), 22.

Compton Camera

Portable African Neutron-Gamma Laboratory for Innovative Nuclear Science (PANGoLINS)

Goal:

- Determine the optimum operational voltage of SiPM.
- Characterize the new portable gamma and neutron detectors coupled to SiPM.
- Investigate the new detectors for use as a Compton camera.

SiPM Operational Voltage

KRF LABS

Manufacturer suggested voltage: 26 - 32 V

Detector crystals

- Two 1" x 1" LaBr₃:Ce detectors manufactured by CapeScint
- Energy resolutions of 2.23% and 2.36% at 662 keV as determined by manufacturer.
- Coupled to Hamamatsu R3998-02 Photomultiplier Tube
- Used to benchmark SiPM performance

Why LaBr₃:Ce-SiPM?

- Measurements taken with the triggerless XIA PIXIE-16 500MHz data acquisition system.
- SiPM is compact and operates at 30 V.
- PMT less compact and operates at 1000 V.
- Measurements taken using ¹³⁷Cs source
 3cm from the detector side.

Why Srl₂:Eu?

- Low intrinsic internal activity about 40 times lower than that of LaBr₃:Ce
- Excellent energy resolution (~3% at 662 keV)

Why Cs₂LiYCl₆:Ce (CLYC) – SiPM?

- Allows us to discriminate between neutron/gamma radiation
- nEL crystals incorporate 7% 6-Li permitting thermal neutron detection, while CI-35 enables fast neutron detection.
- Potential application for experimental measurement of the thermal *neutron* flux, fast *neutron* component and gamma ray dose rate for treatment planning verification in Proton Therapy.

A figure of merit (FOM) value of 2.6 was achieved by the manufacturer (CapeScint) using a Pu/Be neutron source.

To cleanly separate **gamma-ray** and **neutron** interactions, pulse amplitude traces are used to perform pulse shape discrimination (PSD) using the MIDAS software and XIA Pixie-16 14-bit 500 MHz DAQ module.

The current incoming pulse is integrated onto capacitor C, with continuous reset provided by resistor R.

The analog-to-digital converter (ADC) samples the integrated voltage in sets of 600 ns and 1200 ns intervals after the initial trigger.

CLYC PSD Results

 Measurements taken using ¹³⁷Cs, 60Co gamma ray sources, as well as an AmBe neutron source.

2400

2200

Voltage (V) 1000 1000 1000

1400

1200

RO R1

R2

1000

2000

Time [ns]

3000

Next steps

Characterize the fast-timing capabilities of the SrI2:Eu and LaBr3:Ce detectors.

- Investigate the optimum detector configuration/s for use as a Compton Camera (CC) may involve coupling the ON Semi AFBR-S4N44P163 4×4-pixel NUV SiPM.
- Simulate the characterized detectors in Geant4 for the CC investigation

- ▶ We have instrumented and characterized a set of pre-assembled SiPM readout detectors.
- We have begun to clearly distinguish between the neutron and gamma contributions in the CLYC detector using PSD.
- ▶ We can now begin to investigate Compton camera geometries.

Thank you for your attention.