New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

<u>C. Saji</u>, M. Toko, T. Matsushita, R. Furuta, H. Hanaki, S. Hashimoto¹⁾, Y. Hashimoto, M. Kago, K. Kawata, T. Masuda, S. Miyamoto¹⁾, T. Nagaoka, N. Nariyama, H. Ohkuma, S. Sasaki, K. Soutome, S. Suzuki, M. Takao, R. Tanaka, Y. Tsuzuki, A. Yamashita, H. Yonehara

Japan Synchrotron Radiation Research Institute (JASRI/SPring-8) ¹⁾Laboratory of Advanced Science and Technology for Industry (LASTI/U. of Hyogo)

> 12 Apr. 2011 The 3rd Accelerator Reliability Workshop

Outline

- Introduction
- Motivation
- New radiation safety interlock system
- Summary & Future

SPring-8 Accelerator complex

- Electron accelerator
- Light source facility

Linac(Li) Synchrotron Booster(Sy) Storage Ring(SR) L3 beam-transport (L3) NewSUBARU storage ring (NS)

C. Saji: New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

SPring-8 Accelerator complex

Linac(Li) Synchrotron Booster(Sy) Storage Ring(SR) L3 beam-transport (L3) NewSUBARU storage ring (NS)

Linac: Include electron GUN Up to 1GeV

C. Saji: New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

SPring-8 Accelerator complex

Linac(Li) Synchrotron Booster(Sy)

Storage Ring(SR) L3 beam-transport (L3) NewSUBARU storage ring (NS)

> Synchrotron Booster: Up to 8GeV

C. Saji: New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

SPring-8 Accelerator complex

8GeV Storage ring

Linac(Li) Synchrotron Booster(Sy) Storage Ring(SR) L3 beam-transport (L3) NewSUBARU storage ring (NS)

C. Saji: New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

SPring-8 Accelerator complex

Linac(Li) Synchrotron Booster(Sy) Storage Ring(SR) L3 beam-transport (L3) NewSUBARU storage ring (NS)

> L3 beam transport line: Other beam destination

C. Saji: New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

SPring-8 Accelerator complex

Linac(Li) Synchrotron Booster(Sy) Storage Ring(SR) L3 beam-transport (L3) NewSUBARU storage ring (NS)

> NewSUBARU: Another Storage ring (Low energy)

> > C. Saji: New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

Accelerator Radiation Safety Interlock System

Purpose:

Protect persons from radiation hazard induced by electron beams and synchrotron radiation

Basic Function:

<u>Access control:</u>

Manage permission for entering radiation-controlled areas

- <u>Monitoring safety equipment:</u> Radiation monitor etc..
- Manage permission for GUN and RF

Strongly depend on the SPring-8 operation

Accelerator operation

- Five access controlled areas:

Linac (Li) Synchrotron Booster (Sy) <u>Storage Ring</u> (SR) L3 beam-transport (L3) NewSUBARU <u>storage ring</u> (NS)

- Beam generation/acceleration:
 - One electron gun generates electron beam(GUN)
 - Electron beam is accelerated by RF cavity (RF).
 - Four RFs
 - One electron GUN supplies electron beam to all area

SPring-8 Accelerator complex

Combination of areas \rightarrow Many kinds of operations

Various Accelerator Operations

SPring-8 Accelerator Complex

Various Accelerator Operations

Various Accelerator Operations

The number of Operation mode (MODE):

At the beginning (1997~), Accelerator complex consist of Li, Sy and SR

- READY Mode
- L2 Mode
- Sy-injection Mode
- SR-injection Mode
- SR-storage Mode
- L2 + Sy-storage Mode
- L2 + Sy-storage + SR-storage Mode

The number of Operation mode (MODE):

At the beginning (1997~), Accelerator complex consist of Li, Sy and SR

- The number of MODE had increased as accelerator upgrade
 - L3 beam-transport added

- READY Mode
- L2 Mode
- Sy-injection Mode
- SR-injection Mode
- SR-storage Mode
- L2 + Sy-storage Mode
- L2 + Sy-storage + SR-storage Mode
- L3 Mode
- L3 + Sy-storage Mode
- L3 + Sy-storage + SR-storage Mode

The number of Operation mode (MODE):

At the beginning (1997~), Accelerator complex consist of Li, Sy and SR

- The number of MODE had increased as accelerator upgrade
 - L3 beam-transport added
 - NS storage-ring added

- READY Mode
- L2 Mode
- Sy-injection Mode
- SR-injection Mode
- SR-storage Mode
- L2 + Sy-storage Mode
- L2 + Sy-storage + SR-storage Mode
- L3 Mode
- L3 + Sy-storage Mode
- L3 + Sy-storage + SR-storage Mode
- NS-injection Mode
- NS-storage Mode
- L2 + Sy-storage + NS-storage Mode
- L2 + Sy-storage + SR-storage + NS-storage Mode
- Sy-injection + SR-storage + NS-storage Mode
- NS-injection + Sy-storage + SR-storage Mode
- SR-storage + NS-storage Mode

The number of Operation mode (MODE):

At the beginning (1997~), Accelerator complex consist of Li, Sy and SR

- The number of MODE had increased as accelerator upgrade
 - L3 beam-transport added
 - NS storage-ring added
 - Topup operation started

- READY Mode
- L2 Mode
- Sy-injection Mode
- SR-injection Mode
- SR-storage Mode
- L2 + Sy-storage Mode
- L2 + Sy-storage + SR-storage Mode
- L3 Mode
- L3 + Sy-storage Mode
- L3 + Sy-storage + SR-storage Mode
- NS-injection Mode
- NS-storage Mode
- L2 + Sy-storage + NS-storage Mode
- L2 + Sy-storage + SR-storage + NS-storage Mode
- Sy-injection + SR-storage + NS-storage Mode
- NS-injection + Sy-storage + SR-storage Mode
- SR-storage + NS-storage Mode
- Topup Mode
- Topup + NS-storage Mode

The number of Operation mode (MODE):

At the beginning (1997~), Accelerator complex consist of Li, Sy and SR

- The number of MODE had increased as accelerator upgrade
 - L3 beam-transport added
 - NS storage-ring added
 - Topup operation started
 - Destination switching operation started

→The number of MODEs drastically increased (up to around 60 modes)

Many MODEs!

- READY Mode
- L2 Mode
- Sy-injection Mode
- SR-injection Mode
- SR-storage Mode
- L2 + Sy-storage Mode
- L2 + Sy-storage + SR-storage Mode
- L3 Mode
- L3 + Sy-storage Mode
- L3 + Sy-storage + SR-storage Mode
- NS-injection Mode
- NS-storage Mode
- L2 + Sy-storage + NS-storage Mode
- L2 + Sy-storage + SR-storage + NS-storage Mode
- Sy-injection + SR-storage + NS-storage Mode
- NS-injection + Sy-storage + SR-storage Mode
- SR-storage + NS-storage Mode
- Topup Mode
- Topup + NS-storage Mode
- Sy•NS-injection Mode
- SR•NS-injection Mode
- Topup NS-injection Mode

Old Accelerator Safety Interlock System

Old design concept: operation MODE based Safety interlock deeply relates with accelerator operation MODE

• MODE for interlock system also increased as accelerator operation MODE increase

For additional accelerator area,
60 → 120 MODEs ?

Complicated safety logic

Old Accelerator Safety Interlock System

MODE system :

• integrate safety instrument status of all

areas

 determine permissions (GUN/RF) old Accelerator Safety Interlock System component

problem:

- complicated interlock structure (two-way communication etc.)
- incomplete area separation

Motivation

- New radiation Safety Interlock system -

Old design concept \rightarrow hard to improve

problems:

- much cost (person, time) for safety inspection
- hard to modify the system due to complicated safety logic and system structure

"New design concept!!"

- Easier maintenance, modification and troubleshoot
- High extendibility for additional new accelerator area

New task force formed to establish new design concept:

Experts in each division cooperated, Control div. (Accelerator Interlock system) Accelerator div. (Accelerator operation) Safety office

Many experts discussed various issue (2005 ~)

Old design concept:

" MODE based system"

The number of MODEs exponentially increase by

adding an new accelerator area

We had to find efficient concept

Old design concept:

" MODE based system"

The number of MODEs exponentially increase by

adding an new accelerator area

We had to find efficient concept

Area management

What is area management?

SPring-8:

5 access controlled areas

Each area system should handle own area status independently 1) Access control 2) GUN RF permissions 3) Beam injection

MODE: manage the combination of these areas

 \rightarrow combination is not important

SPring-8 Accelerator complex

NS

Sy

SR

L3

Access controlled AREA design concept:

information

GUN design concept:

- Each area system independently manage
 - Accelerator area
 - Permissions (GUN/RF)
- Acc. area system only communicates

with GUN system by one way direction

No MODE management system

New radiation safety interlock system

Li area, Sy area, GUN permission \rightarrow independent system

For area separation: Shutter should be installed for all AREA to know the beam injection

Accelerator system upgrade

Shutter installation:

SPring-8 Accelerator complex

Radiation safety interlock system upgrade

- Many things to do (SPring-8 has large and many facilities)

Construction

- Replacement of all safety instruments
- New safety logic and software for PLCs (for 6 systems)
- Status monitoring/display system
- Wiring/Re-wiring (Signal/Power/Network)
- Simulator for new safety logic software

For starting accelerator operation

- Internal safety inspection.
- Official safety inspection (with external inspectors)
 - \rightarrow should be passed

-Short shutdown period

- a few chance (twice in a year)

Radiation safety interlock system upgrade

We modified all safety system step-by-step

Construction timeline:

Result

Inspection time:

- Reduced: 5 days \rightarrow 3 days
- No MODE inspection (inspection sheet: ~ reduced to be 40%)

Classified all signals systematically:

Result

- Access control and permissions \rightarrow independent
- Communication with other system:

 \rightarrow only consider GUN interlock system communication

easy to expand for additional accelerator area

New Accelerator, SACLA (XFEL/SPring-8)

- SACLA (<u>S</u>Pring-8 <u>Angstrom</u> <u>Compact</u> Free Electron <u>La</u>ser: XFEL/SPring-8)
- 8-GeV LINAC
- X-ray free electron laser
- now beam commissioning

SACLA

C. Saji: New Radiation Safety Interlock System for the SPring-8 Accelerator Complex

New Accelerator, SACLA (XFEL/SPring-8)

- SACLA (<u>S</u>Pring-8 <u>Angstrom</u> <u>Compact</u> Free Electron <u>La</u>ser: XFEL/SPring-8)
- 8-GeV LINAC
- X-ray free electron laser
- now beam commissioning

SACLA

New Accelerator, SACLA (XFEL/SPring-8)

- SACLA (<u>SPring-8 Angstrom Compact Free Electron Laser: XFEL/SPring-8</u>) will be an injector for SPring-8 in the future

Summary

- We constructed new radiation safety interlock system using "AREA management"
- Simple

Safety inspection period was reduced

Reliable

Easier maintenance, modification and troubleshoot Extendibility

• No trouble until now!

Future

SACLA – SPring-8 combined operation