FPGA Tool-flows:
CASPER and Beyond

wesley@ska.ac.za

science and technology

Department:

Science and Technology e :
REPUBLIC OF SOUTH AFRICA i T , b g
¢ Bogtd f —8- S

y© . 4
m - SAUARE KILOMETRE ARRAY -
aroo arre elescope h

O Hationalh SR i»”
esearc
RF Foundation SKA AFR|CA
SQUARE KILOMETRE ARRAY

SKA-SA

DBE Team - Digital Back End
Real-time data processing
Use FPGA based hardware
ROACH Board

CASPER Collaboration

Provide and overview of FPGA technologies
Introduce the CASPER Collaboration
Examine the CASPER FPGA Design-flow

Introductions to the tutorials

Discuss the future of FPGA design-flows and
how CASPER and SKA can take advantage of

these

FPGA - Field Programmable Gate Array

Effectively a reconfigurable semiconductor

Consists of Logic Elements and Interconnects
Well suited to parallel DSP computing

Contain Hard Cores

Getting progressively more complex

Design for FPGAs using Hardware Description
Languages (HDL) Verilog and VHDL

There is a move towards higher-level design
CPU, GPU, FPGA, ASIC

/O Blocks
(10B)

Long
interconnections

Programmable
Interconnect

Configurable
Logic Block
(CLB)

SRAMS cells throughout the FPGA determine
the functionality of the device

- ——— .

2 Major players, Xilinx and Altera plus a few

smaller ones

Each provide there own software for designing

for their FPGAs
Xilinx - ISE/Vivado
Altera - Quartus

Both offer plug-ins for Simulink to take

advantage of block diagram style design and

simulation
Complexities of porting designs between
vendors

IP specific to a vendor

A

E

D

N

A

®

&, XILINX.

2 Major languages Verilog and VHDL

Verilog more of a C syntax
HDL use the event-driven methodology
Generally values of registers change on the

edges of clocks

Tradeoffs, tradeoffs, tradeoffs

ASICs, Long time to develop, hard to make
changes, high NRE costs, run at a higher speed
FPGAs, Short development time, expensive per
unit, bad at floating-point, highly reconfigurable
GPU, Easier to design for, good at floating-point,
high power consumption

CPU, very general purpose, easy to develop for,

lower performance

Unit cost (§)

FPGA costs

I I I | l’
10 100 1000 10,000 100,000 1 million

Units

HDL is very susceptible to bad coding

This can make designs use more power and
resources

The way of thinking when writing in an HDL is
very different to software.

HDLs statements are concurrent

Sequential statements are executed
simultaneously as apposed to sequentially
For loops are also executed in parallel

This is a huge change to the traditional

programming mindset

Synthesis - translate HDL to gates and optimise
MAP - to the resources of the FPGA

Place and Route - Place the output of the MAP
stage on the FPGA

Timing analysis - Run thought the design and

check that the timing constraints are met
Bitfile generation - create the file to upload to
the FPGA

CASPER, Collaboration for Astronomy Signal

Processing and Electronics Research

Open Source Philosophy

Provides a series of FPGA based hardware,
IBOB, BEE2, ROACH1, ROACH2 and many ADCs
Provides a design-flow for developing
applications for this hardware

Provides a space in which to share and
collaborate in astronomy instrumentation
design

Members from all around the world

CASPER

Power Supply

<|= <|s S
| cl° 2 |5 == peugimac)
.......... S - —_
: “»(FANI)« Heatsinkl)«
(Front Panel) ¢ > . <
— F_ . > s HEAT
(GPIO]4_> .
N —— - Monitor/Management TEMP DIODE
Function
TEMP DIODE
A rc Board management
................... ’ subsystem
—_——
| | CLOCK/SYNC INPUT D
| Timidng | CB CLOCK/SYNC INPUT D
and « > -
| Sync UF | C_B CLOCK/SYNC OUTPUT -1
| = ~J
__) =
_— e 12 x GPIO
| L°‘:ﬂ;’;§;‘;‘:&ﬁ’ 34—)' GPIO Headerls
—— e —— Z-DOK. 40 diff p;\ilr (LVDS)
(s (700K) :
—_————— 40 diff pair (LVDS)
| ADCUF1 Z-DOK+ 2
(——— = \I SRV 4/4 pair (2x GTP)
: | e 4/4 pair (2x GTP)
| | Slot 0 4/4 pair 2x GTP)
| > ipuir 44 pair 2x GTP)
| | High-speed 6 x GPIO
| Hnghspchc.l.l /:ngml | C #
atl S————
| | — 4/4 pair (2x GTP)
Up to 8 10Ge ports | MGT —
| | Breakout 4[/4 pair (2x GTP)
: —s Slot 1 4/4 pair (2x GTP)
f
| | 64-Pair 4’/4 pair (2x GTP)
| | "“jg“'“P"Ed 6x GPIO
| I ’
(S |

| Intermediate Speed SGMII PHY

141 pair (1/2x GTP)

+“RI45”

I Signal Path 'F

UC Berkeley CASPER Group
SKA SA

Subsystem
€= T T ¢ >
= s = |- cncad JTAG < > ITAG
SREER F——JI Header
FIDI
FTa23HL
USB to UART/
Test & Debug Multipurpose
subsystem
== T)
>
Signal Memory
_____ ~
QDR II+ / |
CYTC2565KVIS | |
| 4x |
QDR 11 | 36 bits wide |
+
CYTC2565KV1S : 72Mb -> 288Mb |
| Datarate: :
QDR II+ .
CYTC2565KV18 I' ~2 x 100Gbps |
| @ |
- . | 350MHz
Xilinx Virtex-6 QDR II+ | |
CYTC2565KV1S \ |
XC6VSX475T -z :i
FF1759 Package 7 T2bit |
840 user 10 72 | Up to 16GB |
2016 DSP48EI slices DDR3 RDIMM I Data Rate: |
36 GTX transceivers I ~50Gbps @ |
| 350MHz_
vvvvvvv l')':"cc.\'“"_ subsystem
IGE
Boot loader Flash K
) BC

DRAM Kr

PowerPC

32 bit bus

G

Prog. Curl.

N2

156.25MHz
GTP Ref
nX;

100MHz

s Clock
125MHz
Eth Clock

SD/MMC OS storage K=

é} bit bus

CoolRunner-II
CPLD

Debug/Test

Control/Monitoring I/F
—

Last Rev. 2010/02/26

/\7‘0

ROACH

RECONFIGURABLE OPEN ARCHITECTURE
ComMPUTING HARDWARE

wll
i s I (G
| g 1! &

Control &
Monitoring

X Engine
H'::t‘i;gn GJ: Correlate Accumulate *
L}
] 10Gbps
Ethernet '
Network
]
]
F Engine X Engine
Z Coarse Fringe Channel- Complex . | Buffer & . kot
Delay @ Rotation ise multiphy” ﬁ Packetise recrder porrolal Accumulate e

“Complex multiply allows for fine delay control and per-channel digital gain control.
White coloured blocks not yet implemented.

Matlab

Simulink

Xilinx System Generator
Xilinx EDK
CASPER Libraries, framework and base

projects

Simulink provides an environment for block

diagram design

Provides blocks to aid in simulating designs
Such as Signal Generators and Scopes

It is also possible to pull use the Matlab
language to aid in simulation

Such as generation of inputs, comparing

outputs and verify the simulation

Plugs into Simulink

Provides the Xilinx blockset to use in the
Simulink environment

Simulation models are also provided

Lets the designer target a particular FPGA chip
to taylor the blocks for best performance
Generates a netlist of the whole DSP design
This is then used pulled into a base project and

connected up appropriately

e Pcores controllers

e Used as part of the glue logic to pull aspects of
the design together

e Manages the bus infrastructure

FPGA VO Pins

| Bus -
- Pcore Pcore

suld O/ VOdd

Contoller

Controlle Controller

FPGA /O Pins

MSS5GE

ROACHZ
#oG core COl"lﬂg ++ — req_out sim_outf
out_reg
Counter
A

System
Generator

‘datajcasper

imand Window

® Block Parameters: XSG core config (on fiona)

—xsg core config (mask) (link)

lew to MATLAB? Watch thi

The XSG Core Config block is used to configure the System
Generator design

In matlabrc at

for the casper_xps toolflow. Settings here are used to

arning:

In

casper_Tibiy
ink. To wview, discd

configure the
Xilinx System Generator block parameters automatically,
and control toolflow

-l_lfu

In . . -
[e script execution. It needs to be at the top level of all designs
%:: Hlle Edit VIeW || peing compiled
. with the casper_xps toolflow.
aral [1
In MSSGE —Parameters
In ROACH2
In . -— coﬂg Hardware Platform |{J{e}e PRI C Yk v
In
- User IP Clock Source |sys_clk ~|
FI f: i o User IP Clock Rate (MHz)
In sustem 400
In Generator
arn Sample Period
rp
In 1
In
Inl Synthesis Tool: [XST ~|
arning: xps_library
r propagate the chi
In load_system at
== ncel Hel Appl
In startup at 12 — s <P | £ppYy
In matlabrc at 209

Each hardware platform supported by the
CASPER tools has a base design
Applications (DSP designs) get pulled into the

project
This manages clocking infrastructure
Control bus infrastructure

And configures constraints

Green Blocks

Each block has a mask scrips

This redraws the underlying block when a
parameter is changed

This allows a huge amount of flexibility when

designing a block

. . . A 4

sync
poli_in1
poli_in2
poli_in3

pol1_in4

sync_out
pol1_outt
poli_out2
poli_out3

pol1_out4

~

~

~

~

pfh_fir_real
taps=4, add_latency=1

E] Function Block Parameters: pfb_fir_real

~pfb_fir_real (mask)

0 x|

Fold adders into DSPs: Causes adders to be absorbed into DSP blocks
(supported in Virtex5)
Adder implementation: Cores using Fabric or DSP48 or behavioral HDL

~Parameters

Size of PFB: (277 pnts)

12

Total Number of Taps:

4

Windowing Function: | hamming

Number of Simultaneous Inputs: (277)

2

Make Biplex

0

Input Bitwidth:

'8

Output Bitwidth:

18

Coefficient Bitwidth:
<] e
oK ’ Cancel ’ ‘ Help ’ ‘ Apply ‘

Yellow Blocks

Any block that interacts with peripherals

These are scripted to pull in the correct core for
the hardware

Registers accessible from the CPU, DRAM

controllers, ADC controllers

D @@ @ sSimulink Library Browser (on fiona)
File Edit View Help

U O = » ”IEntersearchterm LIH E_T.

|Libraries

= B Simulink
- Commonly Used Blocks
- Continuous
- Discontinuities
~Discrete
- Logic and Bit Operations
- Lookup Tables
- Math Operations
--Model Verification
- Model-Wide Utilities
- Ports & Subsystems
- Signal Attributes
- Signal Routing
- Sinks
-~ Sources
- User-Defined Functions
[+ Additional Math & Discrete
/- CASPER DSP Blockset
-] CASPER XPS Blockset
- 9 DSP System Toolbox
- Wl Simulink 3D Animation
- Simulink Coder
+- Bl Simulink Extras
E] Simulink Verification and Validation
§_| Statefiow
- Tl Xilinx Blockset
E] Xilinx Reference Blockset
- 19 Xilinx XtremeDSP Kit

Showing: CASPER XPS Blockset

Library: CASPER XPS Blockset l Search Results: (none) I Most Frequently Used Blocks I

i

ADCs

Shared FIFO

adc083000x2

gpio

A probe

probe

ten_GbE

[0

fii}

DACs

XAUI

adc1x1800-10

katadc

qdr

ten_Gbe_v2

oo,

MSSGE
Ed

'.lill I

EREER

I1|

1new_yellow_-
block

XSG core
config

dram

one_GbE

quadc

N

Shared BRAM

adc

generic_adc

pcore

software
register

This design demonstrates the use of the wideband ="ladc_protect_disable
lchanneliser blacks with high dynamic range. < ffancy_en £
- new_acc <Jpew acc rs_s’
Bit growth in the VACC for ~1 second accumulation is ~28 bits. fft shift &
System -] ™ —™en
Generator J—’E_" sne sync_out 3] acc_cntr
MSSGE s synec_out ! chitt Inew_acc S—W new_acc dout > EEE]—
ROACHZ, msb_outs pol1_in1 polt_outt ———m{ P{ino outo = din valid
o0 i control oute [~ —Wpoli_in2 polt_outz———] Pin1 " o F m e vaccl
core config ;)) autt n[‘b—»_—ﬂj
11 2012-09-05 outs -E_—W Doh_!ns poli_outs > !n2 m}_’ e ol
- 10kit E2V ADC compile sin_in vea_in] < facc len] e FE T —poltind polt_outs ———W »ins . N - ‘ :
=1 outs —PE—’ poli_ins pol1_outs —’ml—'—’ in4 din valid
110 split up shared brams acc_len outs [E_—W pol1_ins poli_outs ———W{,, 1 Wins outs »f vace!
outz - — pol1_in? polt_oute ———m{,, »ins - MD—P new_acc dout
/109 ratty2.0 2011-12-13 k] fgne_gen] isb_outt [-B-E—Wpoltins pol1_outs ———Wh,, 31 WHin? o Ittt oftl]) ;
- farie with two 450MHz inputs i id
sync_genl posedye2 bus_expand1 pfb_fir_real fft0 Varc?
, 1. 3 outputs =5 add la: 15 stages
108 roach 2011-11-11 . faps=3, add_latency=3 (18,18) new_acc dout
- iadc compile @l Round (unbiased: + Inf)
- roach2 build sim_in s wWep din valid
Band-Limited o3
White Noise o
o5
D—P sim_sync :: im:}—’ new_acc dout
oufofrangen "E—. Int real —’E—'—’ din valid
outofrange1 vaccd
outofrange2 ’ E] W{inz_imag w’ new_acc dout —’m—f—
D—D sim_data_valid outofranges din valid
outofrange4
outofranges yaccs
outofranges w’ new_acc dout] —P'E;EE]—
outofrange? din valid
E’-"P demus_tst_pat_en i — It real —FEJ—’
" . vacch
dfa_valid trig_level M In2_imag L fnew_acel>—mlnensce doutl——ftern—
adel i i
di alid
°° oo PE—P oo ot o] ot
ent reg_out sim_out [H+—] cide
sin_in :; duty_period -P'E]—P inc . wb new_acc dout —P@—L
n " .
Band-mitedt o3 duty_cycle_comp duty._ent LT w{int | —wf o ®{dn valid
White Noise1 o4 . vaced
o5 » Inz_imag > fnew_sccl>—mlnenscc doutl——fterg—
III—’ sim_syne :: din valid
outofranged yaced
outofrange 1 (i o> = w’ new_acc dout] —P'E;EE]—
outofrange2 1% B req_out sim_out 5] - _@—’ din valid
[1 | sincutuvaia outefrange [syne_gen) = EHlen id B vase10
outofrange+ syne_entr > In2_imag fnew_acel>—mlnensce doutl——ftern—
oufofranges
outofranges [ent rst) > E sty oot = din valid
outofrange? m E] en vace! 1
demui_tst_pat_en anE h
“f acc_cntr =
ot >3 e R
[clr status] >—| Wy ade! »en
msb_ In1
::iz b1z ba_sh ade_badd Inew_acel>—fnen_sce — dout Piterpt
ours 1 In3 : "
pus_in_ 015 —W{int din valld
= outd —Ins vaccld
iz ::g sum_sq new_acc dou'—'@—
Isb_outt —MIns .
ade_sum_sg0 En din valid —bEl
ey [syne_gen) = £] sy sync_out E= vacclS
L _ng' [] ::; bad_shiff msb_ou?e > > no!!_im po!|_ou?| P power| m new_acc dout

Simulink provides the ability to simulate designs

This is one of the most important features of the
tools

Unfortunately bit-wise simulation can take days
to complete

Forced to simulate smaller sections of the

design and test their integration on the FPGA

=+t wave - default

File Edit WYiew Insert Format Tools Window

fsymmetric_fir_tb/u_symmetric_fir/clk
fsymmetric_fir_tb/u_symmetric_fir/reset
fsymmetric_fir_tb/u_symmetric_fir/clk_enable [
Asymmetric_fir_tb/u_symmetric_fir/s_in {0000010... JO000DO1 111111111
Asymmetric_fir_tb/u_symmetric_fir/h_in1 (1111111101110111
fsymmetric_fir_tb/u_symmetric_fir/h_in2 (1111111110101010

{

{

Asymmetric_fir_tb/u_symmetric_fir/h_in3
Asymmetric_fir_tb/u_symmetric_fir/h_ind
fsymmetric_fir_tb/u_symmetric_fir/ce_out , | |
Jsymmetric_fir_tb/u_symmetric_fir/y_out {0000000... JT111111... J11111171... J1111111... J0000000... 0000000... J0000...
fsymmetric_fir_tb/y_out_ref 000000001 D0000000000000000000000000000000 111111 1111111, 1111111, J0000000.... J0000000... J0000...
Asummetric_fir_ tbAu symmetnc_fir/delaved = out 000000 | 000000000DO00000

fsymmetric_fir_tb/delayed_=_out_ref UOOOOOT | 0000000000000000

| 0 ns to 97 ns | Now: 145 ns Delta: 1 y

Model driven development approach

Easy to use

Abstracts the application designer away from
the low-level technical aspects of FPGAs, so
that he can focus on the application

Collaboration, open-source

Model driven development approach is key

One click compile solutions

Easy migration of designs from one hardware
platform to another

High-level Languages used for FPGA design
Mathworks HDL Coder, MyHDL (Python), C to
Gates, Migen

Bitwise simulation takes a long time

Need the ability to simulate parts of the design
and then use a higher level simulation to verify
the design as a whole

Different levels of simulation

Bit-wise

Functional Verification

Co-simulation

simulation models for each module in the design

 Model driven development approach is key

 One click compile solutions
e Easy migration of applications from one

hardware platform to another

Generic HDL generator

Target independent synthesizable Verilog and VHDL, but...
Convert Mealy and Moore state charts to HDL

Convert Matlab code to HDL

Provides automatic pipelining

Provides resource estimations

Integration between design documents and design

Can target custom boards

File Ede View Jaet Teoh Desktop Wedow Melp

D& ®

fote e

W om_mutichanne)Subsystem
File Ede View Dot Teoh Desktop Wedow Melp

Lol p = oo [homs R e rame b = [ee [foms JRmBD e Rlme
Unt Deday =
n3
«» Product! . 4_,
" > aduct
) ASE2 Outt
ns
Product2
S
Multipliers: Multipliers: 1
Data rate: Data rate: 4
Base rate: Base rate: 1
——
e Productd
Loty FoaediecCmr et 11% FoanigOncete

) Stateflow (chart) graphical_fcn/Chart
File Edit View Simulation Tools Add Help

B |vi|e’ @ |@

BE

1

p

w
o
=

[U1==1]
1

—r—(%

2

2

1

U2==11Y1=1;}

{Y1=2}

U2<2[{¥1=3}

| »

Ll

=1
@
@
o
~=

Can integrate the current mask scripts that are
used to redraw the current CASPER blocks, by
using HDL Coder the blockset

Ability to simulate or verify

Support for custom boards

03 HOL Workflow Advisor - hdlcoder_age/AGC
File Edit Run View Help
© Find: name and description ol S

4 G HOL Workflow Advisor
4 59 1. SetTarget
Q A1 Set Target Device and Synthesis Tool
- '36 2, Prepare Model For HDL Code Generation
@ 2.1 Check Global Settings
0 A2,2. Check Algebraic Loops
@ ~2.3. Check Block Compatibility
@ ~2.4. Check Sample Times
4 g 3. HOL Code Generation
» &g 3.1 Set Code Generation Options
Q A3.2. Generate RTL Code and Testbench
4 0 4 FPGA Synthesis and Analysis
Q 4.1, Create Project
4) 4.2, Perform Synthesis and P/R
@ 4.2.1. Perform Logic Synthesis
] 4.2.2. Perform Mapping
| 42.3. Perform Piace and Route
| 4.3, Annotate Model with Synthesis Result

1.1. Set Target Device and Synthesis Tool
Analysis (~Triggers Update Diagram)
Set Target Device and Synthesis Tool for HDL code generation
Input Parameters

Target workflow |Generic ASIC)
Generic ASICIFPG,

Target platform | FPGA-n-the-Loop
|FPGA Turnkey

Synthesis tool [;_Cuszomzam for the USRP(TM) Device

Famiy |Vitexs

v | Device |xcavsx3s

Package |fi668

v | Speed [-10

Project folder hdl_pej
[7] Set Target Library (For floating-point synthests support)
Run This Task

Resut: (@ Passed
Passed Set Target Device and Synthesis Tool.

Apply

What is MyHDL?

MyHDL is an open-source Python package that enables Python to be used
as a hardware description language. It does this by means of the Python
Generator and Decorator functionality. MyHDL code can be converted to

either Verilog or VHDL and then implemented onto silicon.

The power of Python is that it provides a high level design language and
the ability to simulate the design using other Python packages such as

NumPy and SciPy.

Concurrency

Generators provide an elegant solution for
modelling concurrency
A generator is a resumable function

Instead of return we use yield

Enables Python to be used as a high-level

modelling language.

Converts Python to HDL

Can be used to wrap existing HDL code

Provides the ability to simulate and model designs
Allows OO concepts to be used in hardware design

ie bus objects

Python conversion to HDL

Using MyHDL to wrap HDL modules
Modelling the HDL modules in Python
Able to use ngc files, HDL and Python in one

design

mem

[Signal(intbv(©) [RAM DATA WIDTH:])

@always(a clk.posedge)
def a logic():

rst:

a data out.next

a data out.next = mem[a addr.val]
a wr:
mem[a addr.val] = a data in.val

@always(b clk.posedge)
def b logic():

rst:
b data out.next

b data out.next = mem[b addr.val]

b wr:
mem[b addr.val] = b data in.val

a logic, b logic

range(2

RAM ADDR WIDTH)]

(a clk)

(: : I 'rst
a data out RAM DATA WIDT

a data out mem[a addr];
(a_wr)
mem[a addr] a data in;

(b clk)
(ACTI\ rst
b data out : ATA WIDT
b data out mem[b addr];

(b wr)
mem[b addr] b data in;

bram sync dp wrapper.verilog code

bram sync dp #{
.RAM DATA WIDTH ($RAM DATA WIDTH),
.RAM ADDR WIDTH ($RAM ADDR WIDTH)

) bram sync dp $block name (
.rst ($rst),
.a clk ($a clk),
Wr ($a wr),
addr ($a addr),
data 1 ($a data 1in),
data ($a data out),
clk ($b clk),
Wr ($b wr),
addr ($b addr),
data 1 ($b data 1in),
data ($b data out)

OO oo 0 v

Levels of Flexibility

- Parameterized modules
- Generate Statements
- Precompiler Directives

- Python Scripting (Redrawing)

Levels of Simulation
- Functional Verification
- Co-Simulation

- Bit-accurate Simulation (Via 3 party software)

CASPER is a successful and design flow

But we need to keep up with the latest
technologies and software

MyHDL has some great methodologies but lacks
a block diagram design environment

HDL Coder very good product and would
provides most of the features we need, although

itisn't cheap.

