
FPGA Tool-flows:
CASPER and Beyond

Wesley New
SKA-SA

wesley@ska.ac.za

Who am I?

• SKA-SA

• DBE Team - Digital Back End

• Real-time data processing

• Use FPGA based hardware

• ROACH Board

• CASPER Collaboration

!
!

Aims

• Provide and overview of FPGA technologies

• Introduce the CASPER Collaboration

• Examine the CASPER FPGA Design-flow

• Introductions to the tutorials

• Discuss the future of FPGA design-flows and

how CASPER and SKA can take advantage of

these

!
!

Background: FPGAs

• FPGA - Field Programmable Gate Array

• Effectively a reconfigurable semiconductor

• Consists of Logic Elements and Interconnects

• Well suited to parallel DSP computing

• Contain Hard Cores

• Getting progressively more complex

• Design for FPGAs using Hardware Description

Languages (HDL) Verilog and VHDL

• There is a move towards higher-level design

• CPU, GPU, FPGA, ASIC

!
!
!

FPGA: Logic and Interconnects

FPGA Vendors

• 2 Major players, Xilinx and Altera plus a few

smaller ones

• Each provide there own software for designing

for their FPGAs

• Xilinx - ISE/Vivado

• Altera - Quartus

• Both offer plug-ins for Simulink to take

advantage of block diagram style design and

simulation

• Complexities of porting designs between

vendors

• IP specific to a vendor

!

HDL (HW Description Lang)

• 2 Major languages Verilog and VHDL

• Verilog more of a C syntax

• HDL use the event-driven methodology

• Generally values of registers change on the

edges of clocks

!
!

CPU v GPU v FPGA v ASIC

• Tradeoffs, tradeoffs, tradeoffs

• ASICs, Long time to develop, hard to make

changes, high NRE costs, run at a higher speed

• FPGAs, Short development time, expensive per

unit, bad at floating-point, highly reconfigurable

• GPU, Easier to design for, good at floating-point,

high power consumption

• CPU, very general purpose, easy to develop for,

lower performance

!
!

FPGA vs ASIC Cost Per Unit

HDL vs Traditions SW

• HDL is very susceptible to bad coding

• This can make designs use more power and

resources

• The way of thinking when writing in an HDL is

very different to software.

• HDLs statements are concurrent

• Sequential statements are executed

simultaneously as apposed to sequentially

• For loops are also executed in parallel

• This is a huge change to the traditional

programming mindset

!
!

HDL to Bit

!
• Synthesis - translate HDL to gates and optimise

• MAP - to the resources of the FPGA

• Place and Route - Place the output of the MAP

stage on the FPGA

• Timing analysis - Run thought the design and

check that the timing constraints are met

• Bitfile generation - create the file to upload to

the FPGA

!
!

CASPER

• CASPER, Collaboration for Astronomy Signal

Processing and Electronics Research

• Open Source Philosophy

• Provides a series of FPGA based hardware,

IBOB, BEE2, ROACH1, ROACH2 and many ADCs

• Provides a design-flow for developing

applications for this hardware

• Provides a space in which to share and

collaborate in astronomy instrumentation

design

• Members from all around the world

!

ROACH2 Architecture

ROACH2

FPGA: Logic and Interconnects

CASPER/MSSGE Toolflow

• Matlab

• Simulink

• Xilinx System Generator

• Xilinx EDK

• CASPER Libraries, framework and base

projects

Matlab/Simulink

• Simulink provides an environment for block

diagram design

• Provides blocks to aid in simulating designs

• Such as Signal Generators and Scopes

• It is also possible to pull use the Matlab

language to aid in simulation

• Such as generation of inputs, comparing

outputs and verify the simulation

XSG (Xilinx System Generator)

• Plugs into Simulink

• Provides the Xilinx blockset to use in the

Simulink environment

• Simulation models are also provided

• Lets the designer target a particular FPGA chip

to taylor the blocks for best performance

• Generates a netlist of the whole DSP design

• This is then used pulled into a base project and

connected up appropriately

Xilinx EDK

• Pcores controllers

• Used as part of the glue logic to pull aspects of

the design together

• Manages the bus infrastructure

Typical FPGA Design

Simple CASPER Design

Design Configuration

CASPER: Base Designs

• Each hardware platform supported by the

CASPER tools has a base design

• Applications (DSP designs) get pulled into the

project

• This manages clocking infrastructure

• Control bus infrastructure

• And configures constraints

!
!

CASPER: DSP Libraries

• Green Blocks

• Each block has a mask scrips

• This redraws the underlying block when a

parameter is changed

• This allows a huge amount of flexibility when

designing a block

!
!
!

PFB FIR

CASPER: Controller Libraries

• Yellow Blocks

• Any block that interacts with peripherals

• These are scripted to pull in the correct core for

the hardware

• Registers accessible from the CPU, DRAM

controllers, ADC controllers

!
!
!
!

!
!

Controller Libraries

• Bullet Point 1

• Bullet Point 2

!
!

Complex Design

Simulation is Key

• Simulink provides the ability to simulate designs

• This is one of the most important features of the

tools

• Unfortunately bit-wise simulation can take days

to complete

• Forced to simulate smaller sections of the

design and test their integration on the FPGA

!
!

Tut1 Bit Simulation

• Bullet Point 1

• Bullet Point 2

!
!

CASPER Success

• Model driven development approach

• Easy to use

• Abstracts the application designer away from

the low-level technical aspects of FPGAs, so

that he can focus on the application

• Collaboration, open-source

!
!

Future of FPGA Design-flows

• Model driven development approach is key

• One click compile solutions

• Easy migration of designs from one hardware

platform to another

• High-level Languages used for FPGA design

• Mathworks HDL Coder, MyHDL (Python), C to

Gates, Migen

!
!
!

Ideal Simulation

• Bitwise simulation takes a long time

• Need the ability to simulate parts of the design

and then use a higher level simulation to verify

the design as a whole

• Different levels of simulation

• Bit-wise

• Functional Verification

• Co-simulation

• simulation models for each module in the design

!
!

HDL Coder

• Model driven development approach is key

• One click compile solutions

• Easy migration of applications from one

hardware platform to another

!
!

!
!

HDL Coder

• Generic HDL generator

• Target independent synthesizable Verilog and VHDL, but…

• Convert Mealy and Moore state charts to HDL

• Convert Matlab code to HDL

• Provides automatic pipelining

• Provides resource estimations

• Integration between design documents and design

• Can target custom boards

!

HDL Coder

!
!
!

HDL Coder

!
!
!

HDL Coder and CASPER

• Can integrate the current mask scripts that are

used to redraw the current CASPER blocks, by

using HDL Coder the blockset

• Ability to simulate or verify

• Support for custom boards

!
!

HDL Coder

!
!
!

MyHDL Overview

What is MyHDL?

!
MyHDL is an open-source Python package that enables Python to be used

as a hardware description language. It does this by means of the Python

Generator and Decorator functionality. MyHDL code can be converted to

either Verilog or VHDL and then implemented onto silicon.

!
The power of Python is that it provides a high level design language and

the ability to simulate the design using other Python packages such as

NumPy and SciPy.

How does MyHDL Model Hardware in a
Functional/O-O Language

• Concurrency

!
• A = B

• B = A

!
• Generators provide an elegant solution for

modelling concurrency

• A generator is a resumable function

• Instead of return we use yield

MyHDL

• Enables Python to be used as a high-level

modelling language.

• Converts Python to HDL

• Can be used to wrap existing HDL code

• Provides the ability to simulate and model designs

• Allows OO concepts to be used in hardware design

ie bus objects

MyHDL Architecture

!
• Python conversion to HDL

• Using MyHDL to wrap HDL modules

• Modelling the HDL modules in Python

• Able to use ngc files, HDL and Python in one

design

MyHDL Example

MyHDL Example

MyHDL Example

MyHDL Architecture

!
 Levels of Flexibility

 - Parameterized modules

 - Generate Statements

 - Precompiler Directives

 - Python Scripting (Redrawing)

!
Levels of Simulation

 - Functional Verification

 - Co-Simulation

 - Bit-accurate Simulation (Via 3rd party software)

Conclusion

• CASPER is a successful and design flow

• But we need to keep up with the latest

technologies and software

• MyHDL has some great methodologies but lacks

a block diagram design environment

• HDL Coder very good product and would

provides most of the features we need, although

it isn't cheap.

