Simulating the System

Massively Parallel High-Performance Ray-Tracing in Astrophysics

High-performance Signal and Data Processing Workshop

Warren A. Carlson

in collaboration with Bevan H. Tucker

School of Physics, University of the Witwatersrand, Johannesburg, South Africa

January 31, 2014

What do we want to do?

In terms of physics,

- We want to test the predictions of the theory of General Relativity in the strong gravitational field regime.
- We want to do this by analysing the pulse arrival times for a pulsar in a binary system with a black-hole.

In terms of computations,

 We must perform an intensive statistical analysis on a very large data set. What are these objects?

What is a black-hole?

- A black-hole is a site of immense gravitational attraction.
- It is the result of the deformation of space-time caused by a compact mass.
- A black-hole is 'black' because is absorbs 'all' incident radiation.
- The defining feature of a black-hole is the appearance of an event horizon.
- Event horizon is a space-time boundary through which you can only pass inwards towards the center of the black-hole.

What is a pulsar?

- A pulsar is a rotating neutron star that emits two beams of electromagnetic radiation.
- The rotation of the beam gives the pulsar an appearance much like a lighthouse that is only visible when the beam is directed at the observer.
- Pulsars are very dense and have short regular rotational periods. This gives precise pulse intervals.
- The precise periods of some pulsars make them the most accurate time keepers known.

Simulating the System

High-Performance? Outlook

What are these objects?

A graphical representation of our system.

Source [http://www.news.cornell.edu/stories/march09/cordes.palfa.einstein.html].

What makes this choice of system a good one?

- Black-hole pulsar binary systems are laboratories for strong gravitational field physics.
- We use the periodicity of pulsar signal to test the theory of General Relativity.
- Pulsars exhibit the most regular period of any known object.

Simulating the System

What should we look for?

A signal emminating from a source behind a gravitating body is delayed as it moves through the gravitational of that body.

How would we like to do this?

How would we like to do this?

- Generate photon trajectories eminating from a pulsar.
- Numerically integrate photon trajectories through the spacetime.
- Measure the signal at a detector.
- Set sights on 10¹² photons (might need more).

Black-Holes, Pulsars, Physics, Simulations	Background	Simulating the System ○●○○○○	High-Performance?	Outlook
Simulated side on scatter of photon trajector	ies by a rotating	black-hole.		

Simulated scattering exclusion zone above a rotating black-hole.

Simulating the System

Why is this so difficult?

A complicated scattering problem

Quasi-stable orbits near the black-hole exibit chaotic motion.

Why is this so difficult?

Problem of computational load

Consider a minimal single photon computation:

- four coupled, second order ODEs.
- \blacktriangleright ~ 1000 integration steps.
- $16 \times 9 = 144$ floating point operations per integration.
- Operation count for 10¹² photons: ~ 1.5 × 10¹⁷ operations.

▶ Intel Corei7 CPU @ 3GHz: \sim 40 GFLOPS $\Rightarrow \sim$ 5 weeks.

Why is this so difficult?

Why is this a good example for grid computing?

Consider the parameter space,

- ► (μ, α, t, T, a, θ, ν),
- Prograde/Retrograde.

To explore five values of each parameter, we must do this calculation $5^7 \times 2 \sim 156000$ times.

In the strong gravity regime, the dynamics of the system are dominated by the black-hole:

- Each photon computation is dependent on the dynamics of the black-hole alone.
- Given the initial conditions, each photon trajectory is computed independently.

Question: How is our simulator better?

Answer: We do less!

Simulating the System

3D integration tracer points standard vs improved

Simulating the System

2D integration tracer points standard vs improved

Simulating the System

What would a signal look like?

Fluxes and residuals

Simulating the System

What would a signal look like?

Fluxes and residuals

Where do we go from here?

This simulation:

- Implement more complicated physics.
- Predict black-hole pulsar binary signal.
- Find black-hole pulsar binary system.
- Compare simulation to measured data.

Apply these methods other problems:

- Particle physics simulations.
- Signal Processing.
- etc. . . .