Likelihood Analysis of Higgs Anomalous Couplings

Supervisor: Prof. Bruce Mellado By: Gilad Amar, Stefan von Buddenbrock

Motivation

- An exploration study for the possibilities of electronpositron colliders.
- Study the differences between what we expect to see from the Standard Model and Beyond Standard Model of Higgs couplings.
- Interest in such studies comes with the concept design of the LHeC and ILC which allow for more than just pp collisions but also e-p and e⁺ - e⁻ respectively.

Background

• Higgs mass(126GeV), spin 1 excluded from y-y channel production . Decay rates and branching ratios (so far) compatible with SM.

Spin-o tentatively confirmed, however spin-2 still a possibility.

• Difficulty investigating with LHC

Higgs production dependant on many BSM couplings, so hard to identify the responsible vertex.

Symmetric initial states, backscatter and forward scatter cannot be discriminated.

• LHeC

Produces electron beams for the LHC tunnel.

LHeC allows for more than just p-p collisions. e-p collisions now accessible.

e-p collisions only one Feynman diagram involving HWW vertex.

COM energy 1-1.5TeV

• ILC

Collides electrons and positrons.

COM energy 500-1000GeV

Produce copious Higgs events

Clean Higgs Production

Lagrangian

- In the SM the couplings of the Higgs to massive electroweak gauge bosons are: $g_{HVV} \propto g M_V V_\mu V^\mu$
- However the most general form of the vertex can be parameterised in the form: *i*Γ^{μν}(*p*, *q*)ε_μ(*p*)ε^{*}_ν(*q*)
- So the most general form of the vertex will be:

$$\Gamma_{\mu\nu}(p,q) = \Gamma_{\mu\nu}^{\rm SM} + \Gamma_{\mu\nu}^{\rm BSM}(p,q)$$

$$\Gamma_{\mu\nu}^{\rm SM} = -gM_V g_{\mu\nu}$$

$$\Gamma_{\mu\nu}^{\rm BSM}(p,q) = \frac{g}{M_V} [\lambda (p \cdot q g_{\mu\nu} - p_\nu q_\mu) + \lambda' \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma]$$

Lagrangian

- λ and λ' being the effective coupling strengths for CPeven and CP-odd operators respectively.
- Such factors may also complex valued.
- λ and λ' shall be referred to as lambda1 and lambda2 respectively.

Method

- Generate model with FeynRules
- Code for model obtained from Kirtimaan Mohan
- Vary parameters to generate different models
- Ad hoc choice of lambda1/2=+-1
- Generate 1M events in MadGraph (Beam energies between 125 and 150 GeV)(Higgs mass=126 GeV)(No Parton Distribution Function) (Next to Leading Order)
- Extract data, plot and inspect for different outcomes.

Process

- The process $e^+ + e^- > v_e + \tilde{v}_e + h$ consists of two channels.
- S-Channel:

• T-Channel:

Insensitivity of S-Channel

- The S-Channel is unaffected by the differing BSM parameters.
- For example: Histogram of the Higgs momentum for colliding electron/positron beams each of 125 GeV

The SM is a black line The BSM models are arbitrarily coloured.

Comparative Graphs

Momentum – 125GeV

Theta – 125GeV

Momentum vs Theta– 125GeV

Likelihoods and Test Statistics

• Likelihoods: the likelihood of a set of parameter values given specified outcomes is equal to the probability of those observed outcomes given those parameter values.

That is to say, the likelihood of which die (weighted or not) was used based on a list of the die roll outcomes.

 Test Statistics: Used for a Significance testing of the likelihood result.

A measure of how confident the likelihood is. 10000 die rolls says a lot more about which die was used than just one toss. Calculated using randomly generated results assuming one of the models to be true and forming log likelihoods and ratios.

Likelihood Tests

- Using the SM cross sections and three different luminosities, 1,5 and 10fb^-1, the number of 'toys' or random events fitting to the models is generated.
- Generating these toys again and again we can compare to the different models getting likelihood ratios.
- Test statistics can be made which use the likelihood ratios to determine the significance of the result.

2.5

Test Statistic Generation

The test statistic is the log likelihood ratio:
 q1 = -ln[L(SM)w.r.t BSM / L(SM)w.r.t SM] IN BLUE
 q2= -ln[L(BSM)w.r.t BSM / L(BSM)w.r.t SM] IN RED

Test statistics of competing models

- Taking measurements of the overlap we can determine the significance to which we can say one model better explains the data than another.
- The following represents only 100 000 test statistics and subsequent analysis to determine the significance at which one can discriminate between these different models.

Toy Number Determination

		Fraction Surviving				
ENERGY	SM MAGRAPH Cross-sec.(pb)	Momentum Cut	Effective Cross-sec.(fb)	Toy No(1fb^-1)	Toy No(5fb^-1)	Toy No(10fb^-1)
125	0.02252	0.18659	12.6060204	12.6060204	63.030102	126.060204
130	0.02324	0.19521	13.6100412	13.6100412	68.050206	136.100412
135	0.02399	0.233351	16.79427147	16.79427147	83.97135735	167.9427147
140	0.02488	0.281477	21.00944328	21.00944328	105.0472164	210.0944328
145	0.02595	0.326968	25.4544588	25.4544588	127.272294	254.544588
150	0.02722	0.383965	31.3545819	31.3545819	156.7729095	313.545819

 The MadGraph cross-section data was for the process of e⁺ + e⁻ > v_e + v
 v_e + h. The true cross-section for the reaction is that given by MadGraph times by three to account for the tau and muon neutrinos. That times the fraction of events surviving the momentum range cut result in the effective cross-section.

- What follows is the results with the following naming convention used:
- "Model 1": Standard Model
- "Model 2": Standard Model + lambda 1=1
- "Model 3": Standard Model + lambda 2=1
- "Model 4": Standard Model + lambda 1=-1
- "Model 5": Standard Model + lambda 2=-1

1fb^-1

Energy Process		1DTheta		1DMomentum		2D	
		P-val	Significance	P-val	Significance	P-val	Significance
125	12	0.47052	0.07396				
	13	0.33578	0.42401	0.28533	0.56708	0.06510	1.51331
	14	0.33056	0.43837	0.05593	1.58989	0.03945	1.75710
	15	0.36578	0.34305	0.28323	0.57327	0.06628	1.50412
	12	0.46278	0.09343	0.00028	3.45028	0.00009	3.74555
130	13	0.36247	0.35186	0.25409	0.66167	0.07121	1.46684
150	14	0.32538	0.45271	0.01517	2.16562	0.01304	2.22502
	15	0.40457	0.24154	0.24721	0.68330	0.06695	1.49890
	12	0.46295	0.09300	0.00625	2.49771	0.00592	2.51682
135	13	0.32487	0.45412	0.21482	0.78981	0.05828	1.56938
155	14	0.33236	0.43341	0.00765	2.4252	0.00401	2.65123
	15	0.30243	0.51742	0.20118	0.83741	0.05365	1.61045
	12	0.48166	0.04599	0.04761	1.66848	0.04562	1.68889
140	13	0.21728	0.78141	0.16196	0.98643	0.04501	1.69529
140	14	0.32355	0.45780	0.00521	2.56157	0.00391	2.65974
	15	0.21542	0.78776	0.15979	0.99532	0.04202	1.72771
	12	0.44583	0.13620	0.20626	0.81947	0.17324	0.94144
145	13	0.15910	0.99816	0.14507	1.05781	0.03872	1.76574
145	14	0.33689	0.42097	0.0146	2.18078	0.00519	2.56291
	15	0.15965	0.99590	0.14428	1.06129	0.04141	1.73455
	12	0.44538	0.13734	0.26202	0.63713	0.21717	0.78179
150	13	0.12141	1.16797	0.12885	1.13184	0.04149	1.73365
150	14	0.30954	0.49716	0.05535	1.59505	0.03025	1.87713
	15	0.09921	1.28607	0.1311	1.12121	0.03277	1.84156

5fb^-1

Energy	Process	1DTheta		1DMomentum		2D	
		P-val	Significance	P-val	Significance	P-val	Significance
	12	0.39710	0.26086				
125	13	0.15063	1.03374	0.09010	1.34014	0.0003	3.43161
123	14	0.11763	1.18692	0.00039	3.35980	0.00007	3.80817
	15	0.17285	0.94296	0.08993	1.34119	0.00031	3.42271
	12	0.38069	0.30367				
130	13	0.21213	0.79905	0.06411	1.52116	0.00044	3.32632
150	14	0.11218	1.21502				
	15	0.24600	0.68713	0.05591	1.59007	0.00038	3.36697
	12	0.38329	0.29685				
135	13	0.10743	1.24031	0.03207	1.85121	0.00018	3.57517
155	14	0.13757	1.0913				
	15	0.11875	1.18126	0.02727	1.92252	0.00013	3.66226
	12	0.37716	0.31295	0.00010	3.71902	0.00008	3.77501
140	13	0.03339	1.83315	0.01037	2.31268	0.00009	3.74555
140	14	0.13927	1.08360				
	15	0.03876	1.76526	0.01012	2.32187	0.00002	4.10748
	12	0.33183	0.43487	0.02766	1.91635	0.01405	2.19589
145	13	0.00767	2.42425	0.00807	2.40573	0.00005	3.89059
145	14	0.16854	0.95995				
	15	0.00886	2.37142	0.00630	2.49488	0.00004	3.95984
	12	0.32894	0.44285	0.06732	1.49605	0.03178	1.85525
150	13	0.00258	2.79750	0.00491	2.58210	0.00003	4.01281
150	14	0.1388	1.08573	0.00006	3.84613		
	15	0.00203	2.87424	0.00401	2.65123		

10fb^-1

Energy	Process	1E)Theta	heta 1DMomentum			2D	
		P-val	Significance	P-val	Significance	P-val	Significance	
	12	0.36176	0.35376					
125	13	0.06913	1.48230	0.02790	1.91259			
123	14	0.04749	1.66969					
	15	0.08330	1.38321	0.02770	1.91573			
	12	0.33518	0.42565					
130	13	0.13003	1.12625	0.01507	2.16825			
130	14	0.04199	1.72805					
	15	0.15860	1.00023	0.01302	2.22561			
	12	0.34745	0.39221					
135	13	0.04202	1.72771	0.00344	2.70260			
155	14	0.05657	1.58424					
	15	0.04679	1.67681	0.00277	2.77383			
	12	0.31271	0.48818					
140	13	0.00444	2.61664	0.00043	3.33272			
140	14	0.05884	1.56459					
	15	0.00559	2.53702	0.00049	3.29621			
	12	0.26315	0.63366	0.00314	2.73279	0.00049	3.29764	
145	13	0.00023	3.50888	0.00019	3.55360			
143	14	0.08196	1.39199					
	15	0.0003	3.43161	0.00020	3.54008			
	12	0.26304	0.63400	0.01554	2.15605	0.00374	2.67468	
150	13	0.00004	3.9444	0.00013	3.65220			
130	14	0.05698	1.58064					
	15	0.00001	4.26489	0.00013	3.65220			

- It seems that in order to distinguish between BSM and SM models for lambda1/2 =+-1 only 5fb^-1 at beam energies of 125GeV is required to get a significance of greater than three.
- The same study could, in principle, with more advanced computing, determine the required amount of data to collect for differing beam energies to distinguish SM and BSM models of varied lambdaı and 2 values. Alternatively such a study can be performed on collected data to exclude ranges for the values of lambda1 and lambda2.

BACKUP SLIDES FOLLOW

HEALTH CARE + GOVERNMENT CONTROL

Visualize the synergy!

Momentum – 125GeV

Momentum – 130GeV

Momentum – 135GeV

Momentum – 140GeV

Momentum – 145GeV

Momentum – 150GeV

Histograms of Theta Distribution

Theta – 125GeV

Theta – 130GeV

Theta – 135GeV

Theta – 140GeV

Theta – 145GeV

Theta – 150GeV

2 Dimensional Plots of Model Data

- Y-axis: Momentum
- X-axis: Theta distribution (convention of 0 to Pi used)

S-Channel momentum range of 2sigma cut out.

This is the S-Channel of the SM used.

Little variation in the S-channel momentum mean and standard deviation in any BSM model compared to SM.

Histograms of Momentum vs Theta Distribution

2D – 125GeV

2D – 130GeV

2D – 135GeV

2D - 140GeV

 $SM + \lambda = 1$

SM + λ = 1

2D – 145GeV

2D – 150GeV

Test Statistic Comparisons

Momentum – 125GeV

Momentum – 130GeV

SM + λ = 1 SM + λ = 1 SM + λ = 1

q

SM + λ['] = 1

Momentum – 135GeV

 $SM + \lambda = 1$

Momentum – 140GeV

 $SM + \lambda = 1$

SM + λ = 1

Momentum – 145GeV

Momentum – 150GeV

 $SM + \lambda = 1$

SM + λ = 1

SM + λ[.] = -1

Theta – 125GeV

Theta – 130GeV

α

Theta – 135GeV

Theta – 140GeV

Theta – 145GeV

Theta – 150GeV

2D – 125GeV

2D – 130GeV

30

2D – 135GeV

SM + λ = 1

2D – 140GeV

 $SM + \lambda = -1$

2D – 145GeV

0.07

0.06

μ Δ

SM + λ['] = 1

SM + λ[.] = -1

2D – 150GeV

