User perspective of a data analysis flow with the ATLAS detector

G. Carrillo-Montoya, on behalf of the ATLAS Collaboration University of the Witwatersrand

High-performance Signal and Data Processing Workshop South Africa January 28th - 2014

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014

Introduction

- My goal is to drive you through the different steps a of typical (Higgs) analysis: search/measurement.
- More than the global strategy and infrastructure details → point out examples and few relevant technical aspects.
- Higgs discovery → nicely presented by Peter yesterday
- The ATLAS computing model \rightarrow will be described in detail by Sahal (next talk)
- ATLAS readout/upgrade → to be presented by Alberto
- Elecronics: Tile Calorimeter \rightarrow to be presented by Carlos

(日本・モート・日本)

The Large Hadron Collider

centre of mass energy: designed \sqrt{s} =14 TeV (ran at 7 TeV in 2011 & 8 TeV in 2012) Peak instantaneous luminosity: designed > 10³⁴ cm⁻²s⁻¹

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya

High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 3/26

▲ □ ▶ ▲ □ ▶ ▲

- ATLAS, CMS → multipurpose detectors
- LHCb \rightarrow forward, asymmetric, vertex (probe *CP*-violating and rare decays)
- ALICE \rightarrow Heavy ion collisions, occupancy large event multiplicity (QGP)
- Totem LHCf → far from IP (σ_{Tot}, proton structure, atmospheric shower)
- Exploring
 - Understanding the Nature of EW symmetry breaking (Hunting Higgs boson)
 - Super Symmetry
 - Matter-Anti Matter asymmetry
 - Quark-gluon plasma
 - Precision measurements \rightarrow New Physics (∞)

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 4/26

A Toroidal LHC Apparatu**S** - 4π solid angle

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 5/26

(日)(四)(日)(日)

ATLAS Detector DQ Status

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	95.0%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.9%
Tile calorimeter	9800	98.3%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	100%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	96.0%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	98.2%

Data challenges Dat Analysis For

Data Formats

Content

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya

High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 7/26

Data challenges Data Analysis Formats

Luminosity \rightarrow pileup interactions

- During 2012, the LHC provided us larger integrated luminosities, still with 50 ns bunch separation:
- More interactions per bunch crossing.
- Reconstruction of objects need even more robust methods \rightarrow performance of physics analysis:
 - More CPU required to process events
 - More disk needed
 - Run-II will be even more challenging!

Tier structure

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya

High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 9/26

Simulated and Data events - Replicated

- Data:
 - Combining $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV (physics and delayed streams) : ~7.6 billion events (p p), ~7.4 PB data volume
- Monte Carlo simulations:
 - $\bullet~>$ 10 billion events (7 TeV, 8 TeV, various configurations) \rightarrow (10-20 million simulated evnts/day)
 - Each event \sim minutes to be simulated (various kinds of simulations from very fast to very detailed "Full")
 - Sizes vary depending on the format, from few kB to few MB per event

CERN - U. of the willwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing 2014; WITS- OERN; January 28th - 2014 10/

Data challenges Data Analysis Formats

Data Flavors

- RAW: raw data from the detector
- ESD (Event Summary Data): output of reconstruction
- AOD (Analysis Object Data): event representation with reduced information for physics analysis (ATLAS-wide format)
- DPD (Derived Physics Data): representation for end-user analysis. Produced for working groups or individual end-users (group-specific format)
- dESD (performance groups), dAOD (physics groups), NTUP (physics groups and end-users)
- TAG: event-level metadata (event tags), short event summaries primarily for event selection

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 11/26

ATLAS Computing Structure Example: $H \rightarrow ZZ \rightarrow 4\ell$

Content

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 12/26

<ロト < 回 > < 回 > < 回 > < 回 >

ATLAS Computing Structure Example: $H \rightarrow ZZ \rightarrow 4\ell$

ATLAS computing system - overview

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 13/26

 Data challenges
 ATLAS Computing Structure

 Analysis
 Example: $H \rightarrow ZZ \rightarrow 4\ell$

Analysing data

- Final state: like for instance $H \rightarrow ZZ \rightarrow 4\ell$
- Select events with a particular topology (know how is your signal: oppositely charged same flavour lepton pairs with certain kinematics)!
- The most expensive part of an analysis is the design of the strategy:
 - Monte Carlo simulations \rightarrow as much statistics as possible (usually never enough)
 - Iterate over (hundreds of millions or even billions of) simulated events over and over again:
 - Find optimal selection (Significance like for instance)
 - Figure out possible systematic uncertainties (detector/theory)
 - Design and test methods to extract background processes from data

(日) (日) (日) (日) (日)

- Corrections, calibrations, alignments, etc
- ...
- Correct bugs

mostly I/O bound (but not always)

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 14/26

ATLAS Computing Structure Example: $H \rightarrow ZZ \rightarrow 4\ell$

Examples of CPU intensive tasks

Certain tasks inputs/outputs needed are small: CPU intensive:

- Kinematic fits
- Multivariate analyses:
 - Matrix Element
 - Boosted Decision Trees
 - Neural Networks
 - Other machine learning algorithms

Statistical quantification → Toy Monte Carlo (post-unblinding the data), very tight timescales

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 15/26

 Data challenges
 ATLAS Computing Structure

 Analysis
 Example: $H \rightarrow ZZ \rightarrow 4\ell$

The golden channel - $H \rightarrow ZZ^{(*)} \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

- 4-lepton (coming from Z decays: same-flavour, opposite charge)
 → very good resolution, high reconstruction and trigger efficiencies → mass peak can be reconstructed
- Almost background free: s/b between 0.9 (4e) and 1.6 4µ
- Very robust against systematic uncertainties
- Very small yield: signal cross section \times branching ratio ($Z \rightarrow \ell \ell \sim 3\%$).
- Low *P_T* objects needed to maximise signal acceptance:
 - Muons:
 - $P_T > 6~{
 m GeV}, \left|\eta
 ight| < 2.7$
 - Electrons:
 - $P_T > 7~{
 m GeV}, \left|\eta
 ight| < 2.47$
- Documentation:
- Phys.Lett. B726 (2013) 88-119
- https://cdsweb.cern.ch/record/1460411/files/ATLAS-CONF-2012-092.pdf
- Phys.Lett. B716 (2012) 1-29

CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 16/26

1

 4μ candidate. $m_{4\ell} = 125.1 \text{ GeV}, m_{12} = 86.3 \text{ GeV}, m_{34} = 31.6 \text{ GeV}.$ $\mu_1: P_T = 36.1 \text{ GeV}, \eta = 1.29, \phi = 1.33$ $\mu_2: P_T = 47.5 \text{ GeV}, \eta = 0.69, \phi = -1.65$ $\mu_3: P_T = 26.4 \text{ GeV}, \eta = 0.47, \phi = -2.51$ $\mu_4: P_T = 71.7 \text{ GeV}, \eta = 1.85, \phi = 1.65$

Data challengesATLAS Computing StructureAnalysisExample: $H \rightarrow ZZ \rightarrow 4\ell$

Events - $H \rightarrow ZZ \rightarrow 4\ell$... needle in a haystack

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 18/26

ATLAS Computing Structure Example: $H \rightarrow ZZ \rightarrow 4\ell$

Examples: Cut optimisation

Example: Use a genetic algorithm to optimise the optimal requirement on the invariant mass of the lepton pair m_{12} and m_{34} that maximises the significance Z = S/sqrtS + B, in reality it is a bit more complicated than this (Poisson regime, systematic uncertainties, etc).

・ ロ ト ・ 戸 ト ・ 日 ト ・

Optimisations aim a certain luminosity target. (with non negligible backgrounds, pretty much always the case in Higgs analysis in hadron colliders, optimal values depend on the statistics)

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 19/2

Data challengesATLAS Computing StructureAnalysisExample: $H \rightarrow ZZ \rightarrow 4\ell$

- Various control samples are used to measured contributions of reducible backgrounds $(Z+jets and t\bar{t})$, depending on the flavour of the sub-leading pair.
- Irreducible background (ZZ), constraint by fit on the full m_{4ℓ} range.
 Cross checked by the single-resonant production peak.

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 20/26

ATLAS Computing Structure Example: $H \rightarrow ZZ \rightarrow 4\ell$

Examples: Multivariate discriminant

Example: Use a Boosted Decision Tree fed with kinematic variables (production and decay angles) to distinguish Spin and Parity of the observed events. (Train machine learning)

(日本) (日本) (日本)

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 21/

ATLAS Computing Structure Example: $H \rightarrow ZZ \rightarrow 4\ell$

Statistics and Toy Monte Carlo

- In some cases we could use an asymptotic formula that save us from having to toss Toy Monte Carlo pseudo-experiments
- "Asymptotics" doesn't always work → many millions of fits needed(independent of each other)
- Usually no need of large external libraries.
- Used GPUs in some cases (or even HPC Blue-Gene @ ANL)

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 22/20

ATLAS Computing Structure **Example:** $H \rightarrow ZZ \rightarrow 4\ell$

Summary

- The excellent performance of ATLAS has allowed to develop a very large variety of analyses, pushing the frontier of understanding
- Our computing model efficiently allows users to analyse several PB of data using hundreds of thousands of CPUs.
- A glimpse (example) of the data analysis details behind a Higgs boson search/measurement was introduced. HEP data analyses → wide spectra of tasks
 Even inside a particular analysis, many different techniques are used each with its own set of challenges and infrastructure requirements.

- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 23/26

(日)

BACKUP SLIDES ..

ATLAS Data-taking efficiency

ATLAS 2011 p–p run												
Inner Tracking				Calorimeters			Muon Detectors				Magnets	
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.6	99.2	97.5	99.2	99.5	99.2	99.4	98.8	99.4	99.1	99.8	99.3

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at Vs=7 TeV between March 13th and October 30th (in %), after the summer 2011 reprocessing campaign

ATLAS p-p run: April-December 2012

Inner Tracker		Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.1	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5
All good for physics: 95.5%										
Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at $v_{s=8}$ TeV between April 4 th and December 6 th (in %) – corresponding to 21.3 fb ⁻¹ of recorded data.										