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Introduction

My goal is to drive you through the different steps a of typical
(Higgs) analysis: search/measurement.
More than the global strategy and infrastructure details→ point
out examples and few relevant technical aspects.
Higgs discovery→ nicely presented by Peter yesterday
The ATLAS computing model→ will be described in detail by
Sahal (next talk)
ATLAS readout/upgrade→ to be presented by Alberto
Elecronics: Tile Calorimeter→ to be presented by Carlos

...
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The Large Hadron Collider

26.659 meters
9.300 magnets
60 tonnes of Liquid He
30+ years
6 main experiments
2 Kelvin

centre of mass energy: designed
√

s =14 TeV (ran at 7 TeV in 2011 & 8 TeV in 2012)

Peak instantaneous luminosity: designed > 1034 cm−2s−1
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The LHC experiments

ATLAS, CMS→ multipurpose detectors
LHCb→ forward, asymmetric, vertex (probe CP-violating and rare decays)
ALICE→ Heavy ion collisions, occupancy - large event multiplicity (QGP)
Totem LHCf→ far from IP (σTot , proton structure, atmospheric shower)

Exploring
Understanding the Nature of EW symmetry breaking (Hunting Higgs boson)
Super Symmetry
Matter-Anti Matter asymmetry
Quark-gluon plasma
Precision measurements→ New Physics (∞)
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A Toroidal LHC ApparatuS - 4π solid angle
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ATLAS Detector DQ Status
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- CERN - U. of the Witwatersrand, G. Carrillo-Montoya High-performance Signal and Data Processing - 2014, WITS - CERN, January 28th - 2014 7/26



Data challenges
Analysis

Data
Formats

Luminosity→ pileup interactions
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During 2012, the LHC provided us
larger integrated luminosities, still with
50 ns bunch separation:

- More interactions per bunch crossing.
- Reconstruction of objects need even

more robust methods→ performance
of physics analysis:

More CPU required to process events
More disk needed
Run-II will be even more challenging!
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Data challenges
Analysis

Data
Formats

Tier structure

Access to all ATLAS users!
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Data challenges
Analysis

Data
Formats

Simulated and Data events - Replicated

Data:
- Combining

√
s = 7 TeV and

√
s = 8 TeV (physics and delayed streams) :

∼7.6 billion events (p − p), ∼7.4 PB data volume

Monte Carlo simulations:
> 10 billion events (7 TeV, 8 TeV, various configurations)→ (10-20 million
simulated evnts/day)
Each event ∼ minutes to be simulated
(various kinds of simulations from very fast to very detailed “Full”)
Sizes vary depending on the format, from few kB to few MB per event
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Data challenges
Analysis

Data
Formats

Data Flavors

RAW: raw data from the detector
ESD (Event Summary Data): output of reconstruction
AOD (Analysis Object Data): event representation with reduced
information for physics analysis (ATLAS-wide format)
DPD (Derived Physics Data): representation for end-user
analysis. Produced for working groups or individual end-users
(group-specific format)
dESD (performance groups), dAOD (physics groups), NTUP
(physics groups and end-users)
TAG: event-level metadata (event tags), short event summaries
primarily for event selection
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Data challenges
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ATLAS Computing Structure
Example: H → ZZ → 4`
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Data challenges
Analysis

ATLAS Computing Structure
Example: H → ZZ → 4`

ATLAS computing system - overview
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Data challenges
Analysis

ATLAS Computing Structure
Example: H → ZZ → 4`

Analysing data

Final state: like for instance H → ZZ → 4`
Select events with a particular topology (know how is your signal:
oppositely charged same flavour lepton pairs with certain
kinematics)!
The most expensive part of an analysis is the design of the
strategy:

Monte Carlo simulations→ as much statistics as possible (usually
never enough)
Iterate over (hundreds of millions or even billions of) simulated
events over and over again:

Find optimal selection (Significance like for instance)
Figure out possible systematic uncertainties (detector/theory)
Design and test methods to extract background processes from data
Corrections, calibrations, alignments, etc
...
Correct bugs

mostly I/O bound (but not always)
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Data challenges
Analysis

ATLAS Computing Structure
Example: H → ZZ → 4`

Examples of CPU intensive tasks
Certain tasks inputs/outputs needed are small: CPU intensive:

Kinematic fits
Multivariate analyses:

Matrix Element
Boosted Decision Trees
Neural Networks
Other machine learning algorithms

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Statistical quantification→ Toy Monte Carlo (post-unblinding the
data), very tight timescales
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Data challenges
Analysis

ATLAS Computing Structure
Example: H → ZZ → 4`

The golden channel - H → ZZ (∗) → `+`−`+`−

4-lepton (coming from Z decays: same-flavour, opposite charge)
→ very good resolution, high reconstruction and trigger efficiencies→ mass
peak can be reconstructed
Almost background free: s/b between 0.9 (4e) and 1.6 4µ

Very robust against systematic uncertainties
Very small yield: signal cross section × branching ratio (Z → `` ∼ 3%).
Low PT objects needed to maximise signal acceptance:

Muons:
PT > 6 GeV, |η| < 2.7

Electrons:
PT > 7 GeV, |η| < 2.47

Documentation:
Phys.Lett. B726 (2013) 88-119

https://cdsweb.cern.ch/record/1460411/files/ATLAS-CONF-2012-092.pdf

Phys.Lett. B716 (2012) 1-29
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4µ candidate. m4` = 125.1 GeV, m12 = 86.3 GeV, m34 = 31.6 GeV.
µ1: PT = 36.1 GeV, η = 1.29, φ = 1.33 µ2: PT = 47.5 GeV, η = 0.69, φ = −1.65
µ3: PT = 26.4 GeV, η = 0.47, φ = −2.51 µ4: PT = 71.7 GeV, η = 1.85, φ = 1.65
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ATLAS Computing Structure
Example: H → ZZ → 4`

Events - H → ZZ → 4` ... needle in a haystack
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In a m4` window
around 120-130 GeV:

Signal ZZ ∗ Z + jets, t t̄ Observed
4µ 6.3±0.8 2.8±0.1 0.55±0.15 13

2e2µ/2µ2e 7.0±0.6 3.5±0.1 2.11±0.37 13
4e 2.6±0.4 1.2±0.1 1.11±0.28 6
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Data challenges
Analysis

ATLAS Computing Structure
Example: H → ZZ → 4`

Examples: Cut optimisation

Example: Use a genetic algorithm to
optimise the optimal requirement on the
invariant mass of the lepton pair m12
and m34 that maximises the significance
Z = S/sqrtS + B, in reality it is a bit
more complicated than this (Poisson
regime, systematic uncertainties, etc).
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Optimisations aim a certain luminosity target. (with non negligible
backgrounds, pretty much always the case in Higgs analysis in
hadron colliders, optimal values depend on the statistics)
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Data challenges
Analysis

ATLAS Computing Structure
Example: H → ZZ → 4`

Various control samples are used to measured contributions of reducible backgrounds
(Z+jets and t t̄), depending on the flavour of the sub-leading pair.

Irreducible background (ZZ), constraint by fit on the full m4` range.
Cross checked by the single-resonant production peak.
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Data challenges
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ATLAS Computing Structure
Example: H → ZZ → 4`

Examples: Multivariate discriminant

BDT output
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Example: Use a Boosted
Decision Tree fed with kinematic
variables (production and decay
angles) to distinguish Spin and
Parity of the observed events.
(Train machine learning)
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Data challenges
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ATLAS Computing Structure
Example: H → ZZ → 4`

Statistics and Toy Monte Carlo
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 4l→ ZZ* →H 
-1Ldt = 4.6 fb∫ = 7 TeV s
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γγ →H 
-1Ldt = 20.7 fb∫ = 8 TeV s

νeνµ/νµν e→ WW* →H 
-1Ldt = 20.7 fb∫ = 8 TeV s

In some cases we could use an asymptotic formula that save us
from having to toss Toy Monte Carlo pseudo-experiments
“Asymptotics” doesn’t always work→ many millions of fits
needed(independent of each other)
Usually no need of large external libraries.
Used GPUs in some cases (or even HPC Blue-Gene @ ANL)
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Data challenges
Analysis

ATLAS Computing Structure
Example: H → ZZ → 4`

Summary

The excellent performance of ATLAS has allowed to develop a
very large variety of analyses, pushing the frontier of
understanding
Our computing model efficiently allows users to analyse several
PB of data using hundreds of thousands of CPUs.
A glimpse (example) of the data analysis details behind a
Higgs boson search/measurement was introduced. HEP data
analyses→ wide spectra of tasks
Even inside a particular analysis, many different techniques are
used each with its own set of challenges and infrastructure
requirements.
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THANK YOU ...



BACKUP SLIDES ...



ATLAS Data-taking efficiency
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