Searching for clustering structure effects of reacting partners through competing fast and thermal emission processes

Daniela Fabris INFN- Padova

on behalf of NUCLEX collaboration

29 October - 2 November 2018 Cape Town, South

Istituto Nazionale di Fisica Nucleare Sezione di Padova

Study of Nuclear Clustering effects

Light Nuclei Coexistence of cluster and mean-fields aspects: connection between cluster emission and nuclear structure.

2N=2Z nuclei: α -cluster structure at E* close to the α -decay threshold

Neutron-rich nuclei: molecular structures of clusters bound by valence neutrons

Medium Mass Nuclei

Clustering effects on reaction dynamics can be **related** either to their **preformation** or to their **dynamical formation**.

Analyze pre-equilibrium particles emission

- W. Von Oertzen et al. Phys. Rep. 432 (2006) 43
- M. Freer et al. , Rep. Progr. Phys. 70 (2007) 2149
- J. P. Ebran et al. , Nature 487 (2012) 341
- W.N. Catford J. Phys. Conf. Series 436, 012095
- P.E. Hodgson, E. Běták, Phys. Rep. 374 (2003) 1-89

... Using Reaction Dynamics

Possible effects of α-cluster structure in the projectile

Studying pre-equilibrium particles emission

T. Marchi et al., Inter. Journ. of Modern Phys. E – Special Topics A. Corsi et al., PLB 679 (2009) 197.

Study the competition between evaporation (surface) and fast (volume) emission of LCP.

¹⁶O + ¹¹⁶Sn @ 8, 12, 16 MeV/A Over-production of α-particle emitted during non-equilibrium stage \rightarrow possible effect of α-cluster structure in ¹⁶O

The Experiment

Comparing LCP emission from fusion reactions with different N/Z projectiles.

Evaporation Residues are detected in coincidence with **Light Charged Particles**

compression and pre-equil. emission of light clusters primary excited intermediate mass statistical s fragments (IMF) and LC decay of p

statistical secondary decay of primary fragments

Theoretical Codes

Statistical Code

GEMINI++

Monte Carlo code to simulate the decay of hot nuclei formed in fusion/quasi-fusion reactions.

- **Standalone** when a good selection of central events can be performed
- Afterburner (after a dynamical code) to produce secondary particles distributions from primary fragments
 -> to be compare with experimental data.

An event file is generated which can be <u>filtered</u> through a software replica of the exp. set-up.

R. J. Charity, Phys Rev C 82 (2010) 014610

Dynamical Codes AMD

The dynamics is considered by eq. of motion of Gaussian wave packets representing the colliding nucleons.

- It describes the cluster structure of the interacting particles.
- It takes into account the particle-particle correlations.

A. Ono, PRC 59 (1999) 853

HIPSE

Phenomenological model based on sudden approximation.

- It describes nuclear collisions of heavy-ions in the intermediate energy range,
- It takes into account dynamical and statistical effects.

D. Lacroix, et al., Phys. Rev. C69 (2004) 054604

- q/q_{beam} < 1.3
- Cut "Residue" on Laboratory Energy vs Charge
- <u>At least</u> 1 fragment with Z inside the cut "Residue"

• <u>Only</u> 1 fragment with $Z \ge 6$

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa

Events Selection

Comparison with Simulations: Z-distribution

¹⁹F + ⁶²Ni

¹⁶O + ⁶⁵Cu

- GEMINI^{⁺+}
- AMD+GEMINI**
- HIPSE+GEMINI^{**}

Angular Distributions vs Simulations

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa

Angular Distributions Differences: Exp – Simulations

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa \

Angular Distributions Differences: Exp – Simulations

Experimental Energy spectra: FNi vs OCu

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa

Energy spectra Difference: FNi - OCu

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa \

Comparison with Simulations: Proton and α Multiplicity

Differences with different Simulations

Proton Multiplicity Differences

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa

Differences with different Simulations

α-particles Multiplicity Differences

Complete events

Exclusive α -Channel Probability

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa \

D. Fabris - COMEX6 - 31.10.2018, Cape Town, South Africa

Summary

- The two reactions ¹⁶O + ⁶⁵Cu and ¹⁹F + ⁶²Ni have been studied at same projectile energy 16 MeV/u to search for clustering structure effects in the reacting partners.
- □ A selection events have been done to take <u>central collisions</u> with Z_{tot}/Z_p+Z_t> 89%
- **Complete events** ($Z_{tot} = 37$) have been analyzed:
 - the ¹⁹F + ⁶²Ni system shows an <u>angular distribution</u> more similar to calculations than ¹⁶O + ⁶⁵Cu ;
 - From the shape of the <u>Energy spectra</u> the ¹⁹F + ⁶²Ni system exibits a larger pre-equilibrium component with respect to ¹⁶O + ⁶⁵Cu, especially for 'pure' α channel \rightarrow possible projectile α -cluster effects ???
 - Pure alpha decay channel are predominant and not reproduced by the simulations for the two systems.
 The ¹⁶O + ⁶⁵Cu case shows a larger probability than ¹⁹F + ⁶²Ni for such channels.
 - Selected exclusive 3 alpha decay channel shows a predominance of <u>equal</u> Relative Energy α particles (Dalitz 1) and <u>equal</u> CM Energy α particle (Dalitz 2).
 - Asymmetric Dalitz 2 plot is observed with a certain number of events with an elongate right bottom corner (E₃ max) → which may indicate the presence of Fast particle emission from pre-equilibrium mechanis even in this specific decay channel.

Outlook

- AMD and HIPSE new calculations with different input parameters
- Study of different exclusive decay channels

NUCL-EX Collaboration

D. Fabris¹, F. Gramegna², M. Cicerchia^{2,11}, V.L. Kravchuk^{4,} T. Marchi², S. Barlini⁶, S. Piantelli⁶, M. Bini⁶, M. Bruno⁵, G. Casini⁶, M.Cinausero², M. D'Agostino⁵, M. Degerlier³, N. Gelli⁶, G. Mantovani^{2,11}, L. Morelli⁵, A. Olmi⁶, P. Ottanelli⁶, G. Pasquali⁶, G. Poggi⁶, S. Valdrè⁶, O.V. Fotina⁷, J. Mabiala¹⁰, C. Frosin⁶, A. Camaiani⁶, I. Lombardo¹²

¹INFN sezione di Padova, Padova, Italy
²Laboratori Nazionali di Legnaro, Legnaro (PD), Italy
³University of Nevsehir, Science and Art Faculty, Physics Department, Nevsehir, Turkey
⁴National Research Center "Kurchatov Institute", Moscow, Russia
⁵Dipartimento di Fisica, Universita' di Bologna and INFN sezione di Bologna, Bologna, Italy
⁶Dipartimento di Fisica, Universita' di Firenze and INFN sezione di Firenze, Firenze, Italy
⁷Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia
⁸ Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy
⁹ Laboratori Nazionali del Sud, Catania, Italy
¹⁰ Prairie View A&M University, Houston, Texas, USA
¹¹ Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy
¹² INFN Sezione di Catania, Catania, Italy

Akira Ono - *Department of Physics, Tohoku University, Sendai, Japan ->* AMD Davide Mancusi – *CEA Saclay, France ->* Gemini++ Denis Lacroix – *IPN Orsay, France ->* HIPSE