

Jet production and structure in pp, p-Pb and Pb-Pb collisions measured by ALICE

Rosi Reed on behalf of the ALICE Collaboration Yale University

Charged jets at ALICE

charged

constituents

Tracking: $|\eta| < 0.9, 0 < \varphi < 2\pi$ TPC: gas drift detector _____ ITS: silicon detector

Rosi Reed - Hard Probes 2013

2

Charged JET

Full jets at ALICE

Charged

constituents

- EMCal is a Pb-scintillator sampling calorimeter which covers:
 - $|\eta| < 0.7, 1.4 < \phi < \pi$
 - tower $\Delta\eta \sim 0.014$, $\Delta\phi \sim 0.014$

Corrected for energy due to charged particles

JET Neutral constituents

Tracking: $|\eta| < 0.9, 0 < \varphi < 2\pi$ TPC: gas drift detector _____ ITS: silicon detector

3

Jet Reconstruction at ALICE There is no unambiguous jet definition!

- Algorithms must be IR and collinear safe
- Fluctuating background and combinatorial jets require care in HI analyses
- Input to the jet finder
 - Charged tracks (ITS+TPC) with $p_T > 150 \text{ MeV/c}$
 - EMCal clusters corrected for charged particle contamination with $E_{T,cluster}^{cor} \ge 300 \text{ MeV}$

$$E_{cluster}^{cor} = E_{cluster}^{orig} - f \sum p^{matched}, \quad E_{cluster}^{cor} \ge 0 \text{ , } f = 100\%$$

FastJet package: Anti-k_T (k_T used for background)

- R = 0.2 0.6
- Boosted p_{T} recombination scheme

Jets in pp QCD baseline studies

Jet Cross-Section (pp) $\sqrt{s} = 2.76$ TeV, R = 0.4 Inclusive

PLB 722, 262 2013

Hadronization needed for theory-data agreement!

Rosi Reed - Hard Probes 2013

Important reference for Pb-Pb collisions

Good agreement
 between data and
 NLO calculations

- Many orders of magnitude
- Jets are a well calibrated probe for the QGP

Jet Cross-Section (pp)

PLB 722, 262 2013

Agreement between data and NLO calculations is good for both R = 0.2 and 0.4

Jet Cross-Section Ratios $\sqrt{s} = 2.76$, 7 TeV, R = 0.2-0.6 Inclusive

PLB 722, 262 2013

J Phys Conf 446, 012004 2013

Hadronization necessary for theory-data agreement Sensitive to jet structure

Jet broadening due to medium effects could change this ratio 8

Jet constituent analyses are **more differential** structure measurements than cross-section ratio 9 Jets in p-Pb Cold Nuclear Matter (CNM) baseline studies

pp → p-Pb Vacuum → CNM

 p-Pb collisions allow us to study CNM

- Important to understand QGP effects
- Initial state effects vs final state effects
 - Small for inclusive spectra 11

Jet cross-section and R_{pPb} $\sqrt{s_{NN}}$ = 5.02 TeV, R = 0.4 Inclusive

arXiv:1310.3612

R_{pPb} = 1 for minimum bias charged jets
CNM have a negligible effect on the cross-section
binary scaling holds
pp reference 7 TeV data scaled using Pythia

Jet cross-section Ratio $\sqrt{s_{NN}} = 5.02$ TeV, R = 0.4 Inclusive

ALI-DER-54684

Cross-section ratio in **p-Pb not significantly different from PYTHIA**

13

M. Verweij Charged k_T in p-Pb Thurs 14:30 $\sqrt{s_{NN}} = 5.02 \text{ TeV}, R = 0.4$

 $k_{T} = p_{T,jet}^{trigger} \sin(\Delta \phi_{dijet})$ $|\Delta \phi_{dijet} - \pi| \leq \frac{\pi}{3}$ Trigger jet $\Delta \phi_{dijet}$ Associated jet

2.5 p-Pb *\s*=5.02 TeV Charged dijets (rad) $60 < p_{T,ch jet}^{trigger} < 80 \text{ GeV}/c$ $d\Delta \varphi_{\rm ch\,dijet}$ dN_{ch dijet} 2 20<p^{assoc}_{T,ch jet}<p^{trigger}_{T,ch jet} GeV/c 22/10/2013 1.5 ch dijet 0.5 2.5 3.5 4.5 3 4 $\Delta arphi_{
m ch~dijet}$ (rad) ALI-PERF-60622

Perpendicular component of k_{T}

Corrected for p_T + angular jet resolution

Charged k_T vs trigger $p_{T,jet}$ in p-Pb $\sqrt{s_{NN}} = 5.02$ TeV, R = 0.4, 0-20% VZERO Multiplicity

Good agreement between data and PYTHIA versus p_{T,jet}

No indication of additional k_T in p-Pb collisions

p-Pb charged $\sigma(|k_T|)$ $\sqrt{s_{NN}} = 5.02 \text{ TeV}, R = 0.4$

- No multiplicity dependence
 - VOA = VZERO A Event multiplicity class
 - Pb-going (2.8< η_{lab}<5.1)
- Good agreement between data and PYTHIA for σ(|k_T|)

pp and p-Pb jets

- We have established a good baseline for heavy ion jet measurements by quantifying observables in both pp and p-Pb
 - pp jet observables agree well with models
- Jets do not appear to be modified in p-Pb compared to pp
 ² Minium-bias p-Pb 5.02 TeV
 - However more differential analyses are on-going!

Jets in Pb-Pb QGP

Pb-Pb

Charged hadrons are suppressed in heavy ion collisions

Time to quantify suppression mechanisms

Jet spectra and structure

ALI-DER-45646

ALICE: PLB 720 (2013) 5262 PRL. 110 (2013) 082302 CMS: Eur.Phys.J. C72 (2012) 1945 PLB 710 (2012) 256277 PLB 715 (2012) 6687

Heavy-lon challenges

- Jet finding algorithms will cluster "jets" from soft background
 - Combinatorial jets (fake)
 - Depend on R and jet constituent p_T
- 2 methods to remove fake jets
 - Leading track bias, h-jet correlations

fake jets*

Jet Spectra $\sqrt{s_{NN}} = 2.76$ TeV, R = 0.4 Inclusive

arXiv:1311.0633

Leading track bias removes combinatorial jets but biases the fragmentation ALICE uses a leading track bias of p_{T,track} > 5 GeV/c

Jet R_{AA} and R_{CP} $\sqrt{s_{NN}} = 2.76$ TeV, R=0.2

22

R_{AA} Models and comparisons

Ratio of Jet Spectra $\sqrt{s_{NN}} = 2.76$ TeV, R=0.2,0.3

- No evidence of jet structure modification in core
- Charged jet ratio $\sigma(R=0.2)/\sigma(R=0.3)$
 - consistent with vacuum jets (PYTHIA)
 - no centrality dependence

Hadron-jet $\sqrt{s_{NN}} = 2.76$ TeV, R=0.4

L. Cunqueiro Mendez Thurs 13:50

Assumes combinatorial jets are not correlated with the trigger hadron P_T distribution of recoil charged jets

Hadron triggered recoil jet spectrum has a **minimal fragmentation bias** down to low p_T and large R Rosi Reed - Hard Probes 2013

Hadron-jet Another way to remove combinatorial background

 $\Delta_{recoil} = Difference$ of per trigger yield of recoil jet spectra Rosi Reed - Hard Probes 2013

Hadron-jet azimuthal correlation

Pb-Pb σ_{2Gaus} =0.215±0.023±0.031 PYTHIA: σ_{2Gaus} =0.256±0.009

$$\Delta_{recoil}(\Delta\varphi) = \left(\frac{1}{N_{trig}}\frac{dN}{d\Delta\varphi}\right)_{19-25} - \left(\frac{1}{N_{trig}}\frac{dN}{d\Delta\varphi}\right)_{9-10}$$

Folded PYTHIA reference consistent with data Consistent with **no mediuminduced jet deflection** 2

Hadron-jet azimuthal correlation Comparison to CMS dijet PRC 84 (2011) 024906

- Hadron-jet results in agreement with dijet results
- Over a broad momentum range, jets are not deflected by the medium
 - Deflection is similar to vacuum jets

Charged Jet Recoil Spectra $\sqrt{s_{NN}} = 2.76 \text{ TeV}, R=0.2, 0.4, 0.5$

 $\Delta_{\text{Recoil}}(\text{R=0.2})/\Delta_{\text{Recoil}}(\text{R=0.5})$

 $\Delta_{\text{Recoil}}(\text{R=0.2})/\Delta_{\text{Recoil}}(\text{R=0.4})$ ∆_{Recoil}(R=0.2)/∆_{Recoil}(R=0.4) ALICE data ALICE data Shape uncertainty Shape uncertainty Correlated uncertainty Correlated uncertainty ALICE PYTHIA Perugia:Tune 0,10 &11 PYTHIA Perugia:Tune 0,10 &11 TT[20,50]-[8,9] TT[20,50]-[8,9] p_{τ}^{const} > 0.15 GeV/*c* anti-k_T p_{τ}^{const} > 0.15 GeV/*c* anti-k_T 0.2 0.2 Pb-Pb √*s*_{NN}=2.76 TeV 0-10% Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV 0-10% 80 90 10 p^{ch}_{T,iet}(GeV/c) 30 20 30 10 20 40 50 60 80 90 100 10 40 60 70 100 70 50 $p_{\rm T,iet}^{\rm ch}({\rm GeV}/c)$ ALI-PREL-64024 ALI-PREL-64020 $\Delta_{recoil} = \left(\frac{1}{N_{trig}} \frac{dN}{dp_{T,jet}}\right)_{20-50} - \left(\frac{1}{N_{trig}} \frac{dN}{dp_{T,jet}}\right)_{8-9}$ Corrected for background fluctuations and detector Corrected for background

ratio compatible with no energy redistribution Δ_{recoil} within R=0.5 Hint of some effect in p_{T,iet} region of ~60 GeV/c?29

Conclusions

- In Pb-Pb collisions ALICE has shown that
 - Jets are suppressed R_{AA} , $R_{CP} < 1$
 - Ratio of jet cross-sections in HI collisions consistent with vacuum case
 - Hadron-jet analysis allows for a larger R
 - **Compatible with no energy** redistribution within **R=0.5**
- No indication of CNM effects for these jet observables
 - R_{pPb} = 1
 - k_T is in agreement with the vacuum case
 - Good baseline for future 5.5 TeV Pb-Pb collisions!

Coming soon: more differential jet structure analyses, PID jets and modification versus reaction plane

Rosi Reed - Hard Probes 2013

Poster on future b-tagging capabilies

Back-up

HI Background Determination Charged Jets $\sqrt{s_{NN}} = 2.76$ TeV

- Underlying event density (p_{ch}), depends on
 - Constituent cut
 - Centrality
 - Event plane
- ho_{ch} : median of $p_{T,kTjet}^{ch}$ / A_{kTjet}
 - 2 leading jets removed
 - May be sensitive to jet fragments outside $k_{\rm T}$ jet cone
 - Determined event-by-event
- ρ_{ch} is not corrected for detector effects or missing energy
- Subtracted from signal jets on a jet-by-jet basis

JHEP 1203:053, 2012 (arxiv:1201.2423)

 $p_{T, jet}^{ch, unc} = p_{T, jet}^{rec} - \rho_{ch} A$

HI Background Determination Full Jets $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

ALI-PERF-44505

Centrality dependent scale factor accounts for neutral energy $\rho_{scaled} = \rho_{ch} \times s_{EMC}$

Background Fluctuations JHEP 1203:053, 2012 Jets $\sqrt{s_{NN}} = 2.76$ TeV

δp_T is not corrected for detector effects – Experiment specific Rosi Reed - Hard Probes 2013 Fluctuations in the background determined via δp_T

- Random cones (RC)
- Depend on
 - Constituent cut
 - R
 - Centrality
 - Event plane
 - Detector

$$\delta p_T^{ch} = p_{T,RC}^{rec} - \rho_{ch} \pi R^2$$

 δp_T is used to construct
unfolding response matrix 36

Background fluctuations Full Jets $\sqrt{s_{NN}} = 2.76$ TeV

- Different method can be used to determine δp_T
 - Random cones
 - Embedded track
 - Embedded Pythia jet

$$\delta p_T = p_{T,RC}^{rec} - \rho \pi R^2$$

 $\delta p_T = p_{T,RC}^{rec} - \rho A - p_{T,probe}$

As R increases, width of δp_T increases which complicates unfolding

 δp_T is used to construct unfolding response matrix

Full Jet Detector Effects pp

- Shift of jet energy scale ~ 20%, JES uncertainty < 3.6%
 - Depends on fragmentation model
 - PYTHIA vs HERWIG, quark vs gluon jets

Jet energy resolution ~ 18%

Dominated by tracking efficiency (similar in Pb-Pb)

Rosi Reed - Hard Probes 2013

arXiv:1301.3475 PLB: 10.1016/j.physletb.2013.04.026

Bin-by-bin unfolding technique used to correct detector effects

38

Charged jet 5% JES uncertainty is at 50 GeV and 3% is at 100 GeV

Phys. Lett. B 719 (2013) 220-241

40

reference is created from pp jets at 7 TeV scalign done via reproducing the same scaling obtained from MC described

by:

$$N_{5TeV} = N_{7TeV} \frac{N_{5TeV_MC}}{N_{7TeV_MC}}$$

Where N is one bin of the jet spectrum. Several Monte Carlo generators used give an uncertainty of roughly 2%

2.76 TeV data has larger uncertainty

ALI-DER-54695