

Anomalies? in Open Data P. Harris (MIT)

Open Data+LHC Olympics

- Given the title and precursor to this talk
 - This talk will focus on Open Data Analyses strategies
 - In particular we are going to focus on anomaly detection
 - Present this in the context of the LHC Olympics 202
- Additionally I will discuss open data presentation
 - Discuss some of my experiences working with open data

LHC Olympics 2020

• <u>https://lhco2020.github.io/homepage/</u>

LHC Olympics 2020

- Over the past year there was a competition
- In this setup a signal was hidden in pseudo data
 - The challenge was to "Find the hidden signal"
 - Emulate a realistic analysis as much as possible
 - Challenge : use deep learning to find an anomaly
- A number of different strategies are used for this approach
 - We will review the core concepts of these strategies

hep-ph/2101.08320

Olympic Data

- Strategy of the olympics:
 - Take a strange signal and hide it in toy data
- There were 3 black boxes split to emulate true data

Olympic Simulation

Simulation Parameters

- Aim was to emulate a real search as much as as possible
 - Simulation and Toy Data are released

Data Format

- Data released in h5 format
 - Standard python format using h5py and pandas
 - Easy to process tools that allow for quick turnaround

Search for Non-Standard Sources of Parity Violation in Jets at $\sqrt{s} = 8$ TeV with CMS Open Data

Christopher G. Lester^a Matthias Schott^{b,c}

^a Cavendish Laboratory, University of Cambridge, UK ^b Massachusetts Institute of Technology, Cambridge, USA ^c Johannes Gutenberg-University, Mainz, Germany

Opportunities and Challenges of Sta ^{cJohannes Gutenb} Production Cross Section Measuren ^{E-mail: lester} Proton–Proton Collisions at \sqrt{s} =8 TeV using CMS Open Data

E-mail: lester@hep.phy.cam.ac.uk, matthias.schott@cern.ch

Aram Apyan^a William Cuozzo^b Markus Klute^b Yoshihiro Saito^b Matthias Schott^{1b,c} Bereket Sintayehu^b

^a Fermilab, USA ^b Massachusetts Institute of Technology, Cambridge, USA ^c Johannes Gutenberg-University, Mainz, Germany

E-mail: matthias.schott@cern.ch

An Aside on Open Data

Processing Data

• To get from particles to analysis follow standard tool flow

Real Data : Minimum Workflow

Why the extra steps?

- Going to real data a number of effects need to be considered
 - Data needs to pass a well defined/measured trigger
 - Bias or inclusive selection can introduce peaks
 - Sample needs to be close to pure QCD to emulate toy data
 - Processes like ttbar, W+jets will contribute significantly
- In reality, there are several more steps
 - Above steps constitute a minimum to emulate olympics

Processing Data

11

• To get from particles to analysis follow standard tool flow

Real Data : Minimum Workflow

Split is typically done to limit the amount of re-computing

Real Data : Minimum Workflow

Building an Analysis FWK

- Frameworks take a long time to build
 - Complicated steps to follow careful curation of the data
 - Many iterations to avoid bugs in code
 - Data formatting what to keep a complex decision
- When preparing data for open analysis worked to get flat ntuple
- Collaborations have taken steps to centralize this
 - Newer data formats embed standard corrections
 - These data formats starting to be available in open data

Towards Regularization

- Bigger biases/corrections eventually embedded in software
 - In CMS: MiniAOD => NanoAOD
 - These are light smaller frameworks that lead to fast analysis
 - Still don't solve all problems

L		AK8Puppi	
d.			
1	E- 12/tmp/Output_2.root	AK8Puppi.eta	
1	Fleents:3	🖌 🔪 AK8Puppi.phi	
L		AK8Puppi.mass	
r		AK8Puppi.ptRaw	
3			
5			
2			
1	Tau 🔀		
1	Photon		
L	PV		
•	AK4CHS	AK8Puppi.ptreg	
P		AK8Puppi.vtxMass	
C	AN4Fuppi	AK8Puppi.vtxPt	
С		AK8Puppi.vtxNtk	
С		AK8Puppi.bjetcorr	
С		AK8Puppi.bjetres	
С		AK8Puppi.csv	
С		AK8Puppi.bmva	
С	with a state of the state of th	AK8Puppi.cvb	
С	E Survey of the second se	AK8Puppi.cvl	
2	mar Evenus,2	AK8Puppi.deepcsvb	
		AK8Puppi.deepcsvc	
		AK8Puppi.deepcsvI	
		ANSPUppl.deepcsvbb	

Other things Lost

- Certain aspects in the data requires insider knowledge
 - Trigger preparation/Trigger biases
 - Which detectors were misfired
 - Details to address these issues are often complicated
- How do you deal with understanding inside knowledge?
 - Talk to others doing data analysis
 - Inside the collaboration many of these are well known

Examples Approaching

- Example sample approaching toy data
 - Special MC simulation sample used for Higgs tagging here
- Discussion on FAIRness of CMS open data here
 - Consensus is that this is close, but could be better
- Samples are are converted to h5 inputs

Variable	Туре	Description
event_no	UInt_t	Event number
npv	Float_t	Number of reconstructed primary vertices (PVs)
ntrueInt	Float_t	True mean number of the poisson distribution for this event from which the number of interactions in each bunch crossing has been sampled
rho	Float_t	Median density (in GeV/A) of pile-up contamination per event; computed from all PF candidates of the event
sample_isQCD	Int_t	Boolean that is 1 if the simulated sample corresponds to QCD multijet production

Dataset semantics

Future of Datasets is the FAIR convention

• Findable

FAIR

17

- Resources easy to find to by both humans+computers
- Metadata readily available; allows for the discovery of interesting data
- Accessible
 - Resource and metadata can be easily accessed and downloaded
 - Both locally by a human, but also machines using standard protocols
- Interoperability
 - Metadata should be ready to be exchanged, interepreted and combined in a semiautomated way with other datasets by humans and computers
- Reuseability
 - Data and metadata are sufficiently well described to allow data to be reused
 - Proper citation must be facilitated and conditions should be valid to machines

Anomaly Strategies@LHC

- Anomaly Strategies at LHC fall into two categories
- I know regions where new physics does not exist

I want to leverage those regions against other parts of the data to find differences

I know how to predict all collisions

Are there any collisions that I cannot predict?

Anomaly Strategies@LHC

Anomaly Strategies at LHC fall into two categories

Weakly-Supervised I know regions where new physics does not exist

I want to leverage those regions against other parts of the data to find differences Autoencoders I know how to predict all collisions

Are there any collisions that I cannot predict?

The LHC Olympics (interspersed with DL concepts)

Results

• We are going to foucs on black box 1

Can use all the jet substructure tools as input

Autoencoders

Strategy is to create a space in the middle that embodies all features of physics

The Latent Space

Encoder

Decoder

- Deep learning algos tend to focus on the latent space
- What is the latent space?
 - Its whatever you want it to be

Reconstructed

Encoder Progression

Progressively moving towards use of more info

Autoencoder Progression

Autoencoders are gaining popularity in HEP just now

Combinations

GAN supported AE

Inputs: High Level Features (Nsubjettiness/Jet masses/...)

- Build an auto encoder (AE)
 - Add an GAN to help AE
 - Additionally decorrelate with mass

 $loss_{AE} = BC + \varepsilon \times MED + \alpha \times DisCo$

itent space forced to be decorrelated with mass

Signal Extraction : Bump Hunter (it Failed)

Take away: Mass Decorrelation+Good Simulation needed

27

BuHuLaSpa

Inputs: High Level Features (Nsubjettiness/Jet masses/...)

Latent space forced to be decorrelated with mass

$$\mathcal{L} = -D_{\mathrm{KL}}(q_{\phi}(\vec{z}_i|\vec{x}_i)|p(\vec{z}_i)) + \beta_{\mathrm{reco}}\log p_{\theta}(\vec{x}_i|\vec{z}_i)$$

Signal Extraction : None

 \vec{x}

Take Away: Training is critical to ensure good performance

Normalizing Flow

Inputs: High Level Features (Nsubjettiness/Jet masses/...) BB1 Dataset

0.0008

0.0007

0.0006

0.0005

- Use a normalizing flow
 - Cut on high loss
 - Decorrelate loss with mass

$$\mathcal{R}_{m_{jj}}(x) = \frac{||x - g(g^{-1}(x))||^2}{1 + \frac{p_u(g^{-1}(x))}{p_{KDE}(m_{jj}^x)}}$$

0.0004 0.0003 0.0002 0.0001 0.0001 0.0000 2000 4000 m_{jj} 0.000 800010000

Cut is too loose (may actually work)

Signal Extraction : None (No signal)

Take Away: single auto encoder even with NF is not enough too many anomalies (no clear signal)

Data cut (high R_{mjj}) R_{mjj} thrsh : 50th percentile

R_{mii} thrsh : 70th percentile

Particle VAE

Inputs: Particle four vectors of the jet

• VAE using particle inputs (RNN)

 $\mathcal{L}(t) = \text{MSE} + 0.1 \times \overline{p_T}(t) D_{\text{KL}}$

Anomaly Score = $1 - e^{-\overline{D_{\text{KL}}}}$ Signal Extraction : None

Take Away: Works but preparation of inputs is critical

BB1 Dataset

Particle Graph AE

Inputs: Particle four vectors of the jet (Graph w/correlations)

 10^{2}

Signif.

- Build a GraphNN Autoencoder
 - Try with mean squared error loss

Signal Extraction : Bump Hunter Algo Take Away: No good handle on loss

Weak Supervision

How do we separate two samples (one with anomalies)

VS

Sample A

Sample B

Difference:

Strategy: Train the data in A agains B Challenge: Must all be same in A and B

More realistic example

How do we train samples with variations of populations of an anomaly

Training Strategies

Topic Modeling/ Clustering

Split a histogram into multiple distributions by looking for separate regions

Classification W/O Labels

Separate out Sample 1 from Sample 2 by hidden signal

Likelihood Discrimination

Factorized Topics

Inputs: Jet mass of each jet

- Factorization: each jet mass distributions can be factorized
- QCD composition is the same for leading and subleading

R&D Dataset

Use leading and trailing jet masses to make "topics"

Solve for the jet mass 1 and 2 that yield 3 distinct categories

Signal Extraction : None (did not work on BB1)

Take Away: Breaks down with small signal

36

Inputs: Jet splittings from declustering

- Latent Dirichlet Allocation (LDA)
 - Decluster jet and use splitting info
 - Construct 2 hypotheses in data
 - LDA minimization to get 2

Compute likelihood of two hypothesis to be consistent

$$L(o_1,\ldots,o_N|\alpha) = \prod_{i=1}^N \frac{p(o_i|\hat{\beta}_1(\alpha))}{p(o_i|\hat{\beta}_2(\alpha))}.$$

Signal Extraction : None (did not work)

Take Away: LDA benefits from many event observables

BB1 Dataset

UCluster

Inputs: Particle Objects

Train a supervised network for jet classification

Cluster in the latent space Scan clusters for anomaly

Signal Extraction : No signal Take Away: Hard with small signal https://arxiv.org/abs/2010.07106

CWOLA

38

Inputs: High level features

- CWOLA modified from original paper
 - Mass inputs dimensionless

BB1 Dataset

Signal Extraction : Bump fit(5σ)

Take Away: Works but needed to correct dimension

GIS(CWOLA+NF)

Inputs: High level features

GIS normalizing flows trained conditional on the mass distribution Scan mass window (250 GeV) Compute likelihood ratio (below)

BB1 Dataset

Large and significant signal

Signal Extraction : Note, but large signal Take Away: Normalizing Flow can help CWOLA style approach

https://arxiv.org/pdf/2001.04990.pdf

Tag N'Train

Inputs: High level features

Use dijet signature play one jet off the other Start with an autoencoder on jet to split sample Run CWOLA on other jet with split sample

BB1 Dataset

Would benefit more from mass decorrelation

Signal Extraction : Bump Fit

Take Away: Avoid mass windows by relying on the different jets https://arxiv.org/abs/2002.12376

Semi-Supervision⁴¹

Autoencoder

Supervised Training

A small amount labeled data

A large amount of unlabelled data

• Use supervised training to catch

(i.e. Find anamalous tulips not anomalous something else in LHC a detector glitch)

Training Strategies

Just Training

Inputs: High level features

Use R&D dataset and do a fully supervised training

Use the output discriminator

Try to see a signal from that

BB1 Dataset

Two submissions tried No Significant excess in either

Signal Extraction : None

Take Away: Signal needs to be close to the hidden signal

QUasi-Anomalous Knowledge(QUAK)

Strategy: Train autoencoders on background and Signals

Choose a broad range of signals that capture physics of interest

Probe the result space for physics-like anomalies

QUAK

45

QUAK approaches or beats supervised NNs when signal is similar

QUAK

Inputs: High level features (Nsubjettiness/Jet masses/...) BB1 Dataset

Mass dependence exists, but not large Due to construction of loss space

 6.3σ significance

Signal Extraction : Bump Fit in categories split across loss space Take Away: Signal Libraries need to be close to hidden signal

Training on Data

- Generally with anomaly approaches
 - There has been an emphasis to train on data
- Training on data simplifies our ability to process data
 - No need to correct for simulation/data disagreements
 - Regions where data/simulation don't agree can be probed
 - No fancy methods to probe these regions w/complicated fits
- Training on data throws away some interpretability of result
 - Not clear what features may drive an access

A fun look at results

Black Box 1

- Nobody found an excess in black box 3
- Black box 2 was empty

Black Box 2

Black Box 2 - Predictions

• PCA on high-level features (old):

A > BC with B > jj and C > jj m(A)=4800 +- 100 GeV, m(B)=725 GeV, m(C)=125 GeV p-value / Signal events: 0.00764 / 89

• VRNN (old):

A > BC with B > jj and C > jj m(A)=4422 +- 722 GeV p-Value: 0.229181609 / Signal events: < 12k

• Embedding clustering:

Z' resonance with mass **4600** GeV +- 17 GeV decaying to 2 jets p-Value: 0.0396 (1.8 sigma) / Event count: 76 +- 28

• Latent Dirichlet Allocation (old) Our method extracts signal descriptions which appear convincing, however the classifier does no identify a bump in the invariant mass spectra. Without this we were unable to determine that signal was present. The di-jet description extracted consisted of one jet of mass 350-400 GeV an another of mass 150-200 GeV. If the production of these states was non-resonant, we would b unable to find the signal with our method. Or if more than just di-jets were relevant to reconstruct the invariant mass, we would also not be able to find it. Otherwise, we determine that no signa was present in the data.

Reminder no signal

QUAK:

BB2 3sigma local evidence for resonance at $\sim 5~\text{TeV}$

• M-flows and GAN-AE:

work in progress (inconclusive)

• VRNN (new):

Hint of an excess at 4.2 TeV

Observations

- There is no catch all solution
 - Many of the best approaches combine multiple ideas
 - A diversity of approaches helps robustness
- LHC Olympics focused on resonant processes
 - Non-resonant processes make background extraction harder
 - Can we deal with complex topologies (such as black box 3)
- Data processing pipeline is assumed to be offline reconsturction
 - Could envision some approach in the triggers
- How can we actually compare sensitivities if we don't have a model?

Performance Observations

Preparing for open data

- The LHC Olympics dataset is a great tool to use
 - Sample is tractable and easy to put together
 - Shows the how a group can come together
- It would be fun to merge all of these strategies
 - Perhaps we could make a much stronger discovery?
- These kind of exercises are needed for the future

Strategy for future

- Its important to make simple tractable datasets
 - There are a lot of steps towards doing an analysis
 - There is also some black magic that goes in
 - Run your studies by somebody on the experiment
- A broad range of anomaly detection algorithms exist
 - Anomaly detection will not just come from one method
 - The diversity of approaches aids in building a robust discovery

Thanks to the organizers for inviting me!

Playing with Prior

Prior Free

Fully Supervised

55

Observation

Inputs: High level features

Signal Extraction : Bump fit

Take Away: Works but needed to correct dimension

Variation of Encoder

Varying the encoder architecture can allow for a broad range of possibilities

Variation of Architecture

Varying the encoder architecture can allow for a broad range of possibilities

CWOLA style approach

- Running just a training got it to work
 - Was able to observe 5 standard deviations

Excess at 3500 instead of 3800

Method 12:Deep Ensemble

- Use R&D dataset and do a fully supervised training
 - Use the output discriminator
 - Try to see a signal from that
 - Try with both a CNN on jet images and BDT on doservables

Observation:Low noise robust density estimation is key

 m_{i_1} (GeV)

Method13:Factorized

- Sample independence: each jet of a dijet can be treated as **Topics** independent and for QCD its composition is the same for leading and subleading
- Factorization: jet mass distributions can be factorized

$$\mathcal{L}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \frac{f(\text{signal}) \cdot p_{\text{signal}}(\mathbf{x}_{1}, \mathbf{x}_{2})}{f(\text{background}) \cdot p_{\text{background}}(\mathbf{x}_{1}, \mathbf{x}_{2})}$$
$$= \frac{f(X, Y) p_{X}(\mathbf{x}_{1}) p_{Y}(\mathbf{x}_{2}) + f(Y, X) p_{Y}(\mathbf{x}_{1}) p_{X}(\mathbf{x}_{2})}{f(\text{QCD}, \text{ QCD}) p_{\text{QCD}}(\mathbf{x}_{1}) p_{\text{QCD}}(\mathbf{x}_{2})}$$

Method 10: Salad+CWOLA

45

Observation:Works well on jets, some limiations from using jet images Would benefit more from mass decorrelation

Method1:VRNN

• Variational Autoencoder using particle inputs (RNN)

 $\mathcal{L}(t) = \text{MSE} + 0.1 \times \overline{p_T}(t) D_{\text{KL}}$

Anomaly Score = $1 - e^{-\overline{D_{\rm KL}}}$

Observation: Works but preparation of inputs is critical

Method 3:GAN-AE

- Build an auto encoder (AE)
 - Add an GAN to help AE
 - Additionally decorrelate with mass
 - Compute a distance (ED) for anom

Autoencoder with 10D latent space Latent space forced to be decorrelated with mass

 $loss_{AE} = BC + \varepsilon \times MED + \alpha \times DisCo$

Observation: Mass Decorrelation+Good Simulation needed

Method 4:LDA

- Latent Dirichlet Allocation (LDA)
 - Decluster jet and use splitting info
 - Construct 2 hypotheses in data
 - Generated through LDA approach

Compute likelihood of two hypoth to be consistent

$$L(o_1,\ldots,o_N|\alpha) = \prod_{i=1}^N \frac{p(o_i|\hat{\beta}_1(\alpha))}{p(o_i|\hat{\beta}_2(\alpha))}.$$

65

Method 5: Particle Graph AE

- p_{i} p_{i
- Build a GraphNN Autoencoder
 - Try with mean squared error loss
 - Try with a permuation invariant loss (robust against physics)

Observation: No good handle on loss

Method 6: Regularized Likelihood

- Use a normalizing flow
 - Cut on high loss
 - Decorrelate loss with mass

Observation: A single auto encoder even with NF is not enough too many anomalies (no clear signal)

Method 8: CWoLa

• Use a normalizing flow

Observation: Approach works for single jet resonances

Method 9: Tag N'Train

Observation:Works well on jets, some limiations from using jet images Would benefit more from mass decorrelation

Method 11:GIS

- Guassian Iterative Slicing
 - Cut on high loss
 - Decorrelate loss with mas

$$p(x|x_c) = \pi(f_{x_c}(x)) \left| \det\left(rac{\partial f_{x_c}(x)}{\partial x}
ight)
ight| = \pi(f_{x_c}(x)) \prod_{i=1}^{i=N} \left| \det\left(rac{\partial f_{x_c,i}(x)}{\partial x}
ight)
ight|.$$

Observation:Low noise robust density estimation is key

Method14:QUAK

71

