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Open Data+LHC Olympics

* Given the title and precursor to this talk
e This talk will focus on Open Data Analyses strategies
* |In particular we are going to focus on anomaly detection
 Present this in the context of the LHC Olympics 202
o Additionally | will discuss open data presentation

* Discuss some of my experiences working with open data
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LHC Olympics 2020
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https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/

| HC Olympics 2020

 QOver the past year there was a competition
* |n this setup a signal was hidden in pseudo data
 The challenge was to “Find the hidden signal”

* Emulate a realistic analysis as much as possible

* A number of different strategies are used for this approach

 We will review the core concepts of these strategies

hep-ph/2101.08320


http://arxiv.org/pdf/2101.08320.pdf
http://arxiv.org/pdf/2101.08320.pdf

Olympic Data
e Strategy of the olympics:

 Take a strange signal and hide it in toy data

* There were 3 black boxes split to emulate true data

Black Box 2 Black Box 3
q g

mx=732 GeV

X mx=4.2 TeV\‘*u~
z Nothing! X
- my=2.2 TeV
mz=38TeV .
. q q
mY=378 GeV X
mx=4.2 TeV

q q
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mpic Simulation

Simulation Samples

Data and simulation shower
parameters lave large differences

Drastically Different
Simulation Parameters

e Aim was to emulate a real search as much as as possible

e Simulation and Toy Data are released



Entrée [1]:

Data Forma;c

Data released in hd format
e Standard python format using hSpy and pandas

 Easy to process tools that allow for quick turnaround

import numpy as np

import matplotlib.pyplot as plt
import h5py

import pandas as pd

Entrée [2]:

Out[2]:

file='events anomalydetection Z XY gqq.h5'
#f sig = h5py.File(file, 'r')
pd.read hdf(file)

9 .. 2091| 2092 2093 2094 2095 2096

3 4 5 6 8

0 §18.283588 -0.903479 0.060979 316431 -0.784941 -0.008755 9.464178 -0.812918 -0.037386fF 4.578035 .. 00 00 00 00 00 0.

1 §17.661003 -0.446288 -1.379160 478683 -0.458125 -1.373650 PR8.452606 -0.455308 -1.375457 §§ 99.440353 ... 00 00 00 00 00 0.

Particle #1 Particle #2 Particle #3
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Processing Data9

* To get from particles to analysis follow standard tool flow

Read Cluster
Data Particles

Compute Perform
Features Analysis

Particles
Jets Substructure Anomalies

Toy Data : Olymeics Workflow

Read
Data

Cluster Lepton

Compute Perf
Particles Vetoes P erorn

Features Analysis

-

Cleaned

Particles
Events Substructure Anomalies

Jets

Real Data : Minimum Workflow



Why the extra steps’.;

* Going to real data a number of effects need to be considered
 Data needs to pass a well defined/measured trigger
e Bias or inclusive selection can introduce peaks
e Sample needs to be close to pure QCD to emulate toy data
 Processes like ttbar, W+jets will contribute significantly
* |n reality, there are several more steps

 Above steps constitute a minimum to emulate olympics



Processing Daté

* To get from particles to analysis follow standard tool flow

Read Cluster
Data Particles

Compute Perform
Features Analysis

Particles
Jets Substructure Anomalies

Toy Data : Olymeics Workflow

Run
PU
rejection

Cluster
Particles] | Vetoes

Read

Compute Perform
Data

Features Analysis

Particles PUPPI/...
Particles

Real Data : Minimum Workflow



How is this usually done’?

Analysis ' Specific

LHC Data  |—i _ _ |
: Framework : : Processing

e Split is typically done to limit the amount of re-computing

Standard re-processing Analysis specific processing

Compute Perform
Features Analysis

Real Data : Minimum Workflow



Building an Analysis FWK

e Frameworks take a long time to build
e Complicated steps to follow careful curation of the data
 Many iterations to avoid bugs in code
e Data formatting what to keep a complex decision
* When preparing data for open analysis worked to get flat ntuple
e Collaborations have taken steps to centralize this
* Newer data formats embed standard corrections

* These data formats starting to be avaible in open data
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Towards Regularization

* Bigger biases/corrections eventually embedded in software

* |[n CMS: MiniAOD => NanoAOD

* These are light smaller frameworks that lead to fast analysis

e Still don’t solve all problems

{_AROOT Files

El‘ﬁ ArpfOutput_2 root
E]i] Events;3
e Blinfo

- ) GenEvtinfo

------ ,ﬁ GenParticle

- ,ﬂ Electron

b | Muan

» ,gﬁ Fhoton

..... =%
- Pl KATHS

L ,ﬂ Ak4Puppi

- ) A C A1 SPupp

: b | 50
- % |Events;2

LT T ML U
=1 A aKaPuppi
$h AKSPuppipt
----- 3 AKSPuppieta
..... % AKEPuppi phi
- & AKBPuppi mass
Bk AKSPuppiptRaw
..... & AKBPuppiunc
$h AKSPuppiarea
ﬁgnspuppiﬁﬂ
----- 3 AKEPuppidz
..... % AKEPuppi lead Pt
..... %& AKEPuppi lepFt
..... & AKSPuppi lepDR
3 AKEPuppi vts3D S
$h AKBPuppi V3 DVal
..... _ﬁ AKSPuppi ptreg
----- 3 AKEPuppivtxMass
..... ﬁ AKEPuppi vtxPt
----- & AKEPuppi vt Ntk
----- & AKBPuppi bietcorr
3 AKSPuppi bietres
ﬁgnsPuppiAcsv
----- 3 AKEPuppibmva
..... % AKEPuppicvh
----- & AKEPuppievl
----- & AKBPuppidespoavh
3 AKEPuppi deepesve
i AKBPuppi deepesvi
----- $h AKBPuppi deepesvib
..... B AKSPuppi deepemyvab




Other things Los;;

e (Certain aspects in the data requires insider knowledge
e Trigger preparation/Trigger biases
 Which detectors were misfired
e Details to address these issues are often complicated
* How do you deal with understanding inside knowledge?
e TJalk to others doing data analysis

* |nside the collaboration many of these are well known
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Examples Approaching

Example sample approaching toy data

e Special MC simulation sample used for Higgs tagging here
Discussion on FAIRness of CMS open data here

e Consensus is that this is close, but could be better

Samples are are converted to hd inputs

Dataset semantics

Variable Type Description

event_no Ulnt_t Event number

npv Float_t  Number of reconstructed primary vertices (PVs)

ntrueint Float t  True mean number of the poisson distribution for this event from which the number of interactions

in each bunch crossing has been sampled

rho Float_t  Median density (in GeV/A) of pile-up contamination per event; computed from all PF candidates
of the event

sample_isQCD Int_t Boolean that is 1 if the simulated sample corresponds to QCD multijet production


http://opendata-dev.web.cern.ch/record/12102
https://indico.cern.ch/event/578992/contributions/2766144/
http://opendata-dev.web.cern.ch/record/12102
https://indico.cern.ch/event/578992/contributions/2766144/
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Future of Datasets is the FAIR convention F AI R

Findable

e Resources easy to find to by both humans+computers

 Metadata readily available; allows for the discovery of interesting data
Accessible

e Resource and metadata can be easily accessed and downloaded

 Both locally by a human, but also machines using standard protocols
Interoperability

e Metadata should be ready to be exchanged, interepreted and combined in a
semiautomated way with other datasets by humans and computers

Reuseability
e Data and metadata are sufficiently well described to allow data to be reused

e Proper citation must be facilitated and conditions should be valid to machines



Anomaly Strategies@LHC

 Anomaly Strategies at LHC fall into two categories

| know regions where new | know how to predict all
physics does not exist collisions

%




Anomaly Strategies@LHC

 Anomaly Strategies at LHC fall into two categories

Autoencoders
| know regions where new | know how to predict all

physics does not exist collisions

%




The LHC Olympics
(interspersed with DL
concepts)



Results

 We are going to foucs on black box 1

Black Box 2 Black Box 3
q g
mx=732 GeV
Zoond” Nothing!
=38TeV
my=378 GeV

Dijet Shg y M X

Can use all the jet substructure tools as input



Autoencoders
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The Latent Space

 Deep learning algos tend to focus on the latent space

Encoder Decoder

AN
PO

XA

e What is the latent space?

e |ts whatever you want it to be

Reconstructed

Original
Input

Input

“Bottleneck”

‘ ..' '-' - i layer
. ' 17 .

17
g O b 9 9
S 9917
7 © © © O 99 79
o 999
IS o o000 “49499¢9
ol 28999
T 53877
ICEN O 0 O 238¢97
A §6637
DO OO 66 ()
F 4 61|

“ 4 /7171 | o

Latent Dimension 1 R _‘,5;}}_
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Encoder Progression

2016 2018

Particles

If‘ﬁﬁyﬁﬂﬁ-l ID CNN

(14 layers)

particles, ordered by pr

Secor.wdarv Vertices
LT

SVs ordered by S/on

o
features

Particles and SVs
with 4-vectors+features
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-1.5-1.0-0.50.0 0.5 1.0 1.5

[Translated] Psuedorapidity (n) PartiCIeS

Images - .
(limited correlations)

not lorentz invariant (Particles+correlations)

Current collaboration results

Progressively moving towards use of more info
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Autoencoder Progression

* Autoencoders are gaining popularity in HEP just now

Reconstructed
Input «------oocoooooooo e Ideally they are identical. ~ ----------------------» nput
X XX
——  Probab ilistic Encoder —
94(2x)
Mean | ,, | = Sampled
H latent vector
bbbbbbbbbbbbb

el e .

o

Std. dev

ilisti
) !
] z
An compressed low dimensional
z= TQ € representation of the input.
L €~ By7) |

Inputs transformed before

Small latent space entering latent space

_ Inputs smeared w/gaussian
that encodes physics

before latent space

Autoencoder
Not smooth

Normalizing Flow
Non-Gaussian VAE




Combinations

Particle+ Particle+

Correlation Latent Correlation
GraphNNs Space GraphNNs

Encoder Latent Space Decoder



GAN supported AE

Inputs: High Level Features (Nsubjettiness/Jet masses/...)

Distributions with bump
BUMP
background

c
+

data

* Build an auto encoder (AE)

e Add an GAN to help AE

* Additionally decorrelate with mass *

lossag = BC + & x MED + a x DisCo S| TR

itent space forced to be decorrelated with mass

Signal Extraction : Bump Hunter (it Failed)

Take away: Mass Decorrelation+Good Simulation needed
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BuHulLaSpa

Inputs: High Level Features (Nsubjettiness/Jet masses/...)

BB1 Dataset

e Bump hunting in the latent space

200 A

—
N
wn

o
o

#events

g &

;

RN

N

v
i

Iy [

1 N=2000
CZ27 N=1000

e Wiy O o W W
T

3 *
2000 3000 4000 5000

Encoder output

6000 7000 8000 9000

ij (GeV)

Autoencoder with 1D latent space

Latent space forced to be decorrelated with mass

L= —DKL(Q¢(ZZ|£!@)|p(Z)) + Breco 10gp9(£i|2i)

Signal Extraction : None

Take Away:Training is critical to ensure good performance



Normalizing Flow

Inputs: High Level Features (Nsubjettiness/Jet masses/...)

BB1 Dataset

Data cut (high Rpy)
Rmj thrsh : 507 percentile

 Use a normalizing flow

000000

e Cut on high loss

e Decorrelate loss with mass

2000 4000 6000 8000 10000
my;

R, (x) = Iz - gp(g(;%))gw Cut is too loose (may actually work)

Pk DE(MY,)

Signal Extraction : None (No signal)

ake Away: single auto encoder even with NF is not enough
too many anomalies (no clear signal)
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Particle VAIf

Inputs: Particle four vectors of the jet
* VAE using particle inputs (RNN) BB1 Dataset

Black Box 1: Dijet Mass, EventScore > 0.75
Bm Black Box 1

$o \ . o T___1 Background
i G L EDE | e Dv Select on
Anomalous
A o Events

' z
' '
' 0
' Ll
' l
Ll 1
' ' -
' '
e ! N\
D K l !
& 1 : =)
Ef W ' [oagll B
1
e H O
: : ///
' ' /
' '
. ’
. . L
h

L(t) = MSE + 0.1 x pr(t) Dk,

h(t)

—

103

h(t-1)

2000 3000 4000 5000 6000 7000 8000

ij [GeV]

Anomaly Score — 1 — e_DKL

Signal Extraction : None

Take Away: Works but preparation of inputs is critical



Particle Graph AE

Inputs: Particle four vectors of the jet (Graph w/correlations)

BB1 Dataset

||||||||||||||||||||||||||||||

Black box 1, MSE
10° 2 1 O JE— Most signif. window -
i 1 Background
Data

5@% ¢(pi-P; — P)

e Build a GraphNN Autoencoder

3000 3500 4000 4500 5000 5500 6000

* Try with mean squared error loss

. ) | ! | , I I 3
3000 3500 4000 4500 5000 5500 6000

Signal Extraction : Bump Hunter Algo

Take Away: No good handle on loss
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Weak Supervision

How do we separate two samples (one with anomalies)

Sample A Sample B

Strategy: Train the data in A agains B
Challenge: "y Must all be same in

Difference:

A and B



More realistic example

How do we train samples with variations of populations of an anomaly
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Training Strategies

Likelihood

Topic Modeling/
Discrimination

Clustering

J . Mixed Sample 1 Mixed Sample 2

P?rt’:chrf:gl;;(i V/5=13 TeV f 1 ( )

R'= 0.4, pr €[250,275] GeV ©0e®®G Inverse
= 7+ et ©OOO®® f7(2)
% B2 dijets . . . ’ .

z £ 7+ quark 616161616
= r~73 Z+ gluon
§ ;;2/ /;j o ; Jet Topic 1 L ...“ ) d 8fxc( )
Q% R ’ Ol Jet Topic 2 (.'I)|.':Cc) - 7T(‘fwc (x)) t
4 770
:;:’ ‘ o 0 ‘ \O
O 5 'r,'('(“" R .
(( aTaan. -

Classifier p(x | X E A)

Constituent Multiplicity

Separate out Sample 1
from Sample 2 by
hidden signal

Split a histogram

iInto multiple distributions
by looking for separate
regions

Pdata (1: | m)
Pvackground (x |m)

R(x|m) =




35

Factorized Topics

Inputs: Jet mass of each jet

e Factorization: each jet mass

distributions can be a0
factorized '-
e QCD composition is the

same for leading and
subleading

Use leading and trailing jet masses
to make “topics”

R&D Dataset

0.14 pr———rr—— T e
L 1ed jet components
At P1 ?‘\Dlll ‘41 Ptl 1 8 & Delphes 3.4.1
0.12F  h R= 10p>13T\/ ] 0025: ’ - 10p>13T\ ]
i Signal fraction = 1% 1 _ : T Signal fraction = 1%
0.10 1 £o0020f
—— Component 2 ] = .
0.08 —— Component 1 ' e 0.015 F —— Component 3
0.06 X truth ] % i Background truth 1
A Y truth 1 Zo0w0f '
0.04 {3 ] & [
0.02 f ] 0.005 F
I \\ J"‘I E : -3 e
0.00 Lte o Dhnsat i 0.000 —
0 : ,. 600 800 1000 0 200 400 ()00 800 1000
\variant jet mass [GeV] Invariant jet mass [GeV]

Solve for the jet mass 1 and 2 that yield
3 distinct categories

Signal Extraction : None (did not work on BB1)

Take Away: Breaks down with small signal



Inputs: Jet splittings from declustering
e Latent Dirichlet Allocation (LDA) BB1 Dataset

45000

[ dataset with cuts
— = dataset with random sampling

* Decluster jet and use splitting info
e Construct 2 hypotheses in data

0

) LDA mlnlmlzatlon tO get 2 2000 4000 602;:1” 8000 10000 12000

JI

Compute likelihood of two hypothesis to be consistent ”

500 1 B

400 A -

p(0;|B1(c 20
(017-- 0N| ) T H Z| ) § 200 ‘I_{ \lh‘

= ]_p O’L|/B2 Y 100 1

Signal Extraction : None (did not work) == R

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m;;

Take Away: LDA benefits from many event ooservanies




UCluster

R&D Dataset

Inputs: Particle Objects

-
N
T

Train a supervised network for
jet classification

Entries / bin
Entries / b|

—
o
T T T T

200}

Cluster in the latent space
Scan clusters for anomaly

100}

2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000

Dijet mass [GeV] Dijet mass [GeV]
. " - ::: ° O’ :::
Signal Extraction : No signal ,
Take Away: Hard with small Signéh o v i v B R e

https://arxiv.org/abs/2010.07106



https://arxiv.org/abs/2010.07106
https://arxiv.org/abs/2010.07106
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CWOLA
Inputs: High level features

 CWOLA modified from original paper BB1 Dataset

BB1

e Mass inputs dimensionless

BB1
| I
: Signal
egion!' b0 e ek e e e —— - - D -
100 L,
> I T —e-ql
v ! I A
(©) Hre-ele o I 1 T¥Tme
I I T e R
S 10°1 i, 1 e S |
— o AU A O 2%
cole le o TSR o T,
I I iy
2100 wepleglt o 11 T T 1% 3
I it S N [ U e ]
3 l [ + "*‘r-L--L__t__ ¢ = L ____=F o__ |
(W] | | | | e al
10-1 I [ |T [ ‘T 1
B | | |e——I
lm . T T T T
L L___1_Sideband ) 3500 4000 4500 5000

I
3000 3500 4000 4500 5000 5500 6000

mu/GeV mj; (GeV)

Signal Extraction : Bump fit(50)
Take Away: Works but needed to correct dimension



GIS(CWOLA+NF)

Inputs: High level features

GIS normalizing flows trained BB1 Dataset
conditional on the mass distribution

Scan mass window (250 GeV) ’
Compute likelihood ratio (below)

Signal mass Mass Side band

R(x|m) =

psmnal/ pbackground

a

_1 o0
2750 3000 3250 3500 3750 4000 4250 10110310°
MJJ [GeV]

Large and significant signal

Pdata (CE | m)
Pbackground (37 |m)

Signal Extraction : Note, but large signal

Take Away: Normalizing Flow can help CWOLA style approach
https://arxiv.org/pdf/2001.04990.pdf



https://arxiv.org/pdf/2001.04990.pdf
https://arxiv.org/pdf/2001.04990.pdf
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Tag N Train
Inputs: High level features
Use dijet signature play one jet off the other BB1 Dataset

Start with an autoencoder on jet to split sample

~ 4

Run CWOLA on other jet with split sample S sof E
™ - -

™  35F 3

| S o 40 at BB1 *

Events Initial Classifier vieally rai New Improved P = 5
Classified Events Classifier Classifier Y= 25 resonance -

()} -

o 20 =

SElseLn"t(se | 15 E

10 + ‘ E

——Sig Rich
Train on -t 3
02's 5 . E
New 02 = + _‘L i I
Bkg Rich Classifier 0 I - T

SR B 1 M B SR B R AV e
2600 2800 3000 3200 3400 3600 3800 4000 4200 4400
m

JJ

O1 Classifier

Events
Sig Like Sig Rich New O1 -
@j Would benefit more
: Train on
Ol's
Bkg Rich

02 Classifier

from mass
decorrelation

Bkg Like
Events

Signal Extraction : Bump Fit

Take Away: Avoid mass windows by relying on the different jets
https://arxiv.org/abs/2002.12376



https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2002.12376

Semi-Supervision

Autoencoder

A large amount of unlabelled data

 Use supervised training to catch and not

(i.e. Find anamalous tulips not anomalous something else in LHC a detector glitch)
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Training Strategies

JU_St do a Use the latent space Construct Space
SuperVISed tralnlng for aUtoenCOder/ from autOencoderS

supervised on sig/bkg

Wrong

Signals vs |Background

LTI TTTT]

L TTTTTITT]

nput
—r
SR

(T IIITII1]

[ITTITTTTTT]

= — =
VTS - /
\ S /
N\ - S~
= — -~
ﬂ < >
A -7
O| '\~
VT S
> N N
(NN 77
NN T
NN
@]
o
2
N ®

CLLTTTTTTITITTE

Search for new physics et
by using an incorrect signal
- | Background] vs Signals
Use classifier to isolate

Use classifier loss for “Backgroutid
search

EEEEEEEEEN

[ITTTITITT]

|
|




Inputs: High level features

Use R&D dataset and do a fully
supervised training

Use the output discriminator

Try to see a signal from that

Signal Extraction : None

Just Training43

BB1 Dataset

[ Background
[ s+B

[ B(predict)
0.0008 A S(predict)

0.0010

0.0006 ~

0.0004 A

Fraction of events

0.0002 ~

‘‘‘‘‘‘‘‘‘‘‘

0.0000 g T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000

mj; (GeV)

Two submissions tried
No Significant excess in either

Take Away: Signal needs to be close to the hidden signal



QUasi-Anomalous
Knowledge(QUAK)

Strategy: Train autoencoders on background and Signals
Choose a broad range of signals that capture physics of interest

Probe the result space for physics-like anomalies

Anomalous features /_\

3D QUAK
Space

Use Normalizing
Flow Autoencoders

— Signal #1

¢

\
>

Background

Signal Loss

Signal #2 Loss

Selection

0,0
Background Loss 0,0,0 = Background Loss



QUAK

6 4
Performance on 3-prong Signal o ---- Supervised on 2-prong 4500 500 150 (correct)
‘|‘ MW‘ =5TeV, MX =500 Gev' MY =500 GeV — QUAK(Z‘D) on 2-prong 4500 500 150 (correct)
\ Supervised on 2-prong 6000 700 300
! 105 4 QUAK(2D) on 2-prong 6000 700 300
10° 1 "\ Supervised = === Supervised on 3-prong 5000 500 500
L N A QUAK(1D) ' —— QUAK(2D) on 3-prong 5000 500 500
--== QUAK(2D) 10¢
— QUAK(3D)
10* !
I
o |
— — \
\
oy 102- \‘\‘
1* 11D: QCD Prior ok I S
2D: QCD Prior + 2-prong Signal Prior(4500,500, 150) i 1 TTTmeell__
3D: QCD Prior + 2-prong Signal Prior(4500,500,150) 1 1D: QCD Prior T
+ 3-prong Signal Prior(5000,500,500) Lo0 | 2D: QCD Prior + 2-prong Signal Prior(4500,500,150) \
107 T T T T T T T T
00 02 04 06 08 10 0.0 0.2 0.4 0.6 0.8 1.0
Esig Esig

QUAK approaches or beats supervised NNs when signal is similar

https://arxiv.org/pdf/2011.03550.pdf



https://arxiv.org/pdf/2011.03550.pdf
https://arxiv.org/pdf/2011.03550.pdf

QUAK

Inputs: High level features (Nsubjettiness/Jet masses/...)

BB1 Dataset

m 8 F
i & ~nl
~ i o 80 + Toy Data
- < [
il 3 - a
U w So— AN e Background-only Fit
= 40— \ Background+Signal Fit
.:_ E - ' mEma. .‘
Il 30 — R O
[ 20
10—
BlackBox 1
= : & & ‘9. .;. .o G ¢ : ;:: Q. .. L alLIN'S
00 Il 1 i 2 3 4 1 I 6 1 7 8 T 9 | 10 1 95000 3500 4000 4500 5000 5500 6000

m; (GeV)

Mass dependence exists, but not large 6.30 significance

Due to construction of loss space
Signal Extraction : Bump Fit in categories split across loss space

Take Away: Signal Libraries need to be close to hidden signal



Training on Dat;

 Generally with anomaly approaches

* There has been an emphasis to train on data
* Training on data simplifies our ability to process data

* No need to correct for simulation/data disagreements

* Regions where data/simulation don’t agree can be probed

* No fancy methods to probe these regions w/complicated fits
e Training on data throws away some interpretability of result

* Not clear what features may drive an access



Black Box 1

ResNet + BDT

PCA

LSTM+

High-level features AE
Tag N Train

Density Estimation (GIS)
VRNN

Latent Dirchlet Allocation

Human NN

2000

4000

6000 -5

Resonance Mass [GeV]

0
Pull

ResNet + BDTH

PCA

LSTM+

High-level features AE
Tag N Train-

Density Estimation (GIS)
VRNN

Latent Dirchlet Allocation

Human NN

0

500

1000

1500-5

Daughter Particle A Mass [GeV]

0
Pull

48

ResNet + BDTH

PCA

LSTM+

High-level features AE
Tag N Train;

Density Estimation (GIS)H
VRNN

Latent Dirchlet Allocation

Human NN

10°

102 104
Number of Signal Events

ResNet + BDTH

PCA

LSTM+

High-level features AE
Tag N Train

Density Estimation (GIS)
VRNN

Latent Dirchlet Allocation

Human NN

0

Daughter Particle B Mass [GeV]

* Nobody found an excess in black box 3

* Black box 2 was empty
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Black Box 2 - Predictions

PCA on high-level features (old):

A>BC with B>jjand C > jj

m(A)=4800 +- 100 GeV, m(B)=725 GeV, m(C)=125 GeV
p-value / Signal events: 0.00764 / 89

VRNN (old):

A > BC with B > jj and C > jj

m(A)=4422 +- 722 GeV

p-Value: 0.229181609 / Signal events: < 12k

Embedding clustering:

Z' resonance with mass 4600 GeV +- 17 GeV decaying to 2 jets
p-Value: 0.0396 (1.8 sigma) / Event count: 76 +- 28

Latent Dirichlet Allocation (old)

Our method extracts signal descriptions which appear convincing, however the classifier does nc
identify a bump in the invariant mass spectra. Without this we were unable to determine that
signal was present. The di-jet description extracted consisted of one jet of mass 350-400 GeV an
another of mass 150-200 GeV. If the production of these states was non-resonant, we would b
unable to find the signal with our method. Or if more than just di-jets were relevant to reconstruc
the invariant mass, we would also not be able to find it. Otherwise, we determine that no sign:
was present in the data.
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Black Box 2

Reminder no signal

e (QUAK:

BB2 3sigma local evidence for resonance at ~ 5 TeV

Significance vs Mass

p° value

llllﬂl] T Hlllll'l T IIIHW T llllllq T IIIIUW T IIHIIII T Hlllll] TTTm

—e— BlackBox 2 WAIC
BlackBox 2 Cut1
. e BlackBox 2 Cut2
] I S EU S EF S S RS PR
3500 4000 4500 5000 5500

6000
m; (GeV)

Sang Eon Park, LHCO 2020

e M-flows and GAN-AE:

work in progress (inconclusive)
e VRNN (new):

Hint of an excess at 4.2 TeV



Observations

There is no catch all solution

e Many of the best approaches combine multiple ideas

e A diversity of approaches helps robustness

LHC Olympics focused on resonant processes

* Non-resonant processes make background extraction harder
e Can we deal with complex topologies ( such as black box 3)
Data processing pipeline is assumed to be offline reconsturction
e Could envision some approach in the triggers

How can we actually compare sensitivities if we don’t have a model?



Performance Observations
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Normalizing Flow approaches stood out
So did Observable based encoding(not sure why)



Preparing for open data52

e The LHC Olympics dataset is a great tool to use
e Sample is tractable and easy to put together
e Shows the how a group can come together

* |t would be fun to merge all of these strategies
 Perhaps we could make a much stronger discovery?

e These kind of exercises are needed for the future



Strategy for futu re53

e |ts important to make simple tractable datasets
* There are a lot of steps towards doing an analysis
 There is also some black magic that goes in
 Run your studies by somebody on the experiment
* A broad range of anomaly detection algorithms exist
* Anomaly detection will not just come from one method

* The diversity of approaches aids in building a robust discovery
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A\ S 4 ’ ’f" ‘ L)

Thanks to the organizers
for inviting me!
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Playing with Prior

Prior Free Fullx SuEervised I

CMS Preliminary 2.7 b (13TeV)
SignalRegion 3 ‘ )

I Background Semi-SupeNised

- Signal

CWOLA Approaches

-, style o
QUAK »
|°g(pback9round(x|m)) — B TR T d‘ LI%
. 0 0102 03 04 05 06 07 08 09 1
If It q u aks Transformed diphoton BDT classifier score
o
like a duck?

+Data Simulation background SM H-yy, m"=125 GeV|
[ jet jet I goH
I v jet B vBF
By VH
100 MC stat, uncert. [ ttH

Classic

Events/0.02




Inputs: High level features

CWola vs. Autoencoder: (m;,, m;,) = (500, 500) GeV

Q
=
M
? ____________________
(@}
—4— Initial deviation
-4- S/VB
1011 4 —$— CWola: 0.3%
| 70 AE: (80%, 2.5%)
1 2

S/B in SR

Signal Extraction : Bump fit
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Observation

CWOLA works really well
for large signals

But for small signals
Autoencoders tend to win

You need enough events
In your data to separate them

Take Away: Works but needed to correct dimension
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Variation of Encoder

Varying the encoder architecture
can allow for a broad range of possibilities
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Variation of Architecture

Varying the encoder architecture
can allow for a broad range of possibilities

200 { H 1 N=2000
T N=T1000
45000

Autoencoder 40000

- 35000 -
=|=|; 30000 -
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CWOLA style approach59

Running just a training got it to work

e \Was able to observe 5 standard deviations

Events / 100 GeV

CWola vs. Autoencoder: (m;,, m;,) = (500, 500) GeV
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Method 12:Deep Ensemble

I, \QeVv)
e Use R&D dataset and do a fully 1 oo | 3 201

supervised training o

@ 0.0006 -

5
e Use the output discriminator S o000

S
* Try to see a signal from that

eo
1000 1500 2000 2500 3000 3500 4000 4500 5000

» Try with both a CNN on jet images and BDT on 8b&&Wables

Observation:Low noise robust density estimation is key



Method13:Factorized

e Sample independence: each jet of a dijet can be treated-aL-O p I CS
independent and for QCD its composition is the same for leading

and subleading

* Factorization: jet mass distributions can be factorized

llllllllllllll
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Method 10: Salad+CWOLAi
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)bservation:Works well on jets, some limiations from using jet images
Would benefit more from mass decorrelation



Method1:VRNN

e Variational Autoencoder using particle inputs (RNN)

R \ R Black Box 1: Dijet Mass, EventScore > 0.75
S |4 | ] e [ £ 1072 4 B Black Box 1
ht-1) ioutl B(t-1) ] 2223 Background
o Select on
ot y Anomalous
: 1074
5 N Events
VA
= o
= || AR
=) 10-3
* h(t-1)
2000 3000 4000 5000 6000 7000 8060
- ij [GeV]
E(t) = MSE + 0.1 X pT(t)DKL

Anomaly Score = 1 — e DKt

Observation: Works but preparation of inputs is critical



Method 3:GAN-AE

e Build an auto encoder (AE)

e Add an GAN to help AE

* Additionally decorrelate with mass .

i i
3000 3500 4000 4500 5000 5500 6000 6500 7000
N i i
3 1
[ ¥ 2
=S
. g o — =
c -1 1
?_2 1 1
1 1
-3 1 1
-4 1 1
3000 3500 4000 4500 5000 5500 6000 6500 7000

Autoencoder with 10D l|atent space
Latent space forced to be decorrelated with mass

lossag = BC + ¢ x MED + o x DisCo

Observation: Mass Decorrelation+Good Simulation needed



Method 4:LDA

45000

[ dataset with cuts

40000 - == dataset with random sampling

e | atent Dirichlet Allocation (LDA)

30000 -

25000 -
20000 -

* Decluster jet and use splitting info s

10000 A

5000 -

e Construct 2 hypotheses in data o w0 @0 s W0 1

n;

600

 Generated through LDA approacl *

400 - -

Compute likelihood of two hypoth to be consistent iZZ J %

p O /Bl 100 1 U-I-HHW
L(oy, ... ,on|o )_H i o

200
z 1 p OZ|182 ) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ny;

Observation: LDA benefits from many observables



Method 5: Particle Graph AE
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e Try with mean squared error luss

 Try with a permuation invariant loss (robust against physics)

Observation: No good handle on loss



Method 6: Regularized
Likelihood

e Use a normalizing flow

e Cut on high loss

0.8

e Decorrelate loss with mass

0.6

o

[+

[
0.0008

Data cut (high Rpy) 0.4
0.0007 Rmj thrsh : 507 percentile
Rmj thrsh : 70" percentile
0.0006 ROC curve A-flow R_shift (AUC = 0.7882)
00005 0.2 —— ROC curve M-flow R_exp (AUC = 0.7802)
‘ —— ROC curve NF basic likelihood (AUC = 0.7687)
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Observation: A single auto encoder even with NF is not enough
too many anomalies (no clear signal)



Method 8: CWoLa68

e Use a normalizing flow

e Cut on high Ine~

CWola vs. Autoencoder: (m;,, m;,) = (500, 500) GeV

e Decorrelate BN
S .
30|

w o ___ b0 |
-
S ©
Q - T
Q . ___20__.
| —— initial deviation 6o
-4-syg L\ || T 0777
1011 - —4— CWola: 0.3%
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1 2

Observation:Approach works for single jet resonances



69

Method 9: Tag N Traln
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)bservation:Works well on jets, some limiations from using jet images
Would benefit more from mass decorrelation



Method 11:GIS

e Guassian lterative Slicing

e Cut on high loss

1055'
51 :
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Observation:Low noise robust density estimation is key



Ia

Method14:QUAK
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