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• Given the title and precursor to this talk 


• This talk will focus on Open Data Analyses strategies


• In particular we are going to focus on anomaly detection


• Present this in the context of the LHC Olympics 202


• Additionally I will discuss open data presentation 


• Discuss some of my experiences working with open data
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Open Data+LHC Olympics



• https://lhco2020.github.io/homepage/ 
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LHC Olympics 2020

https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/


• Over the past year there was a competition 


• In this setup a signal was hidden in pseudo data


• The challenge was to “Find the hidden signal” 


• Emulate a realistic analysis as much as possible


• Challenge : use deep learning to find an anomaly


• A number of different strategies are used for this approach


• We will review the core concepts of these strategies
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LHC Olympics 2020

hep-ph/2101.08320  

http://arxiv.org/pdf/2101.08320.pdf
http://arxiv.org/pdf/2101.08320.pdf


• Strategy of the olympics: 


• Take a strange signal and hide it in toy data


• There were 3 black boxes split to emulate true data
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Olympic Data

Black Box 1 Black Box 2 Black Box 3

Nothing!

mX=4.2 TeV

mX=4.2 TeV

mY=2.2 TeV



• Aim was to emulate a real search as much as as possible 


• Simulation and Toy Data are released 
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• Data released in h5 format 


• Standard python format using h5py and pandas


• Easy to process tools that allow for quick turnaround
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Data Format

Particle #1 Particle #2 Particle #3



An Aside on Open Data



• To get from particles  to analysis follow standard tool flow
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• Going to real data a number of effects need to be considered


• Data needs to pass a well defined/measured trigger


• Bias or inclusive selection can introduce peaks


•  Sample needs to be close to pure QCD to emulate toy data


• Processes like ttbar, W+jets will contribute significantly


• In reality, there are several more steps


• Above steps constitute a minimum to emulate olympics
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Why the extra steps?



• To get from particles  to analysis follow standard tool flow
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• Split is typically done to limit the amount of re-computing
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How is this usually done?
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• Frameworks take a long time to build


• Complicated steps to follow careful curation of the data


• Many iterations to avoid bugs in code


• Data formatting what to keep a complex decision


• When preparing data for open analysis worked to get flat ntuple


• Collaborations have taken steps to centralize this


• Newer data formats embed standard corrections


• These data formats starting to be avaible in open data
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Building an Analysis FWK



• Bigger biases/corrections eventually embedded in software


• In CMS: MiniAOD => NanoAOD 


• These are light smaller frameworks that lead to fast analysis


• Still don’t solve all problems
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Towards Regularization



• Certain aspects in the data requires insider knowledge


• Trigger preparation/Trigger biases


• Which detectors were misfired


• Details to address these issues are often complicated


• How do you deal with understanding inside knowledge?


• Talk to others doing data analysis


• Inside the collaboration many of these are well known
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Other things Lost



• Example sample approaching toy data


• Special MC simulation sample used for Higgs tagging here 


• Discussion on FAIRness of CMS open data here 


• Consensus is that this is close, but could be better


• Samples are are converted to h5 inputs
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Examples Approaching

http://opendata-dev.web.cern.ch/record/12102
https://indico.cern.ch/event/578992/contributions/2766144/
http://opendata-dev.web.cern.ch/record/12102
https://indico.cern.ch/event/578992/contributions/2766144/


• Findable


• Resources easy to find to by both humans+computers


• Metadata readily available; allows for the discovery of interesting data


• Accessible


• Resource and metadata can be easily accessed and downloaded


• Both locally by a human, but also machines using standard protocols 


• Interoperability


• Metadata should be ready to be exchanged, interepreted and combined in a 
semiautomated way with other datasets by humans and computers 


• Reuseability


• Data and metadata are sufficiently well described to allow data to be reused


• Proper citation must be facilitated and conditions should be valid to machines
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FAIRFuture of Datasets is the FAIR convention



• Anomaly Strategies at LHC fall into two categories
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Anomaly Strategies@LHC

I know regions where new 
physics does not exist

I want to leverage those 
regions against other 

parts of the data to find 
differences

I know how to predict all 
collisions 

Are there any collisions 
that I cannot predict?



• Anomaly Strategies at LHC fall into two categories
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Anomaly Strategies@LHC

I know regions where new 
physics does not exist

I want to leverage those 
regions against other 

parts of the data to find 
differences

I know how to predict all 
collisions 

Are there any collisions 
that I cannot predict?

AutoencodersWeakly-Supervised



The LHC Olympics 
(interspersed with DL 

concepts)



• We are going to foucs on black box 1 
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Results
Black Box 1 Black Box 2 Black Box 3

Nothing!

Dijet scenario XY

Can use all the jet substructure tools as input
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Autoencoders

Strategy is to create a space in the middle that embodies all features of physics



• Deep learning algos tend to focus on the latent space


• What is the latent space? 


• Its whatever you want it to be 
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The Latent Space

What comes out of latent  
space can be a mystery
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Encoder Progression

Images  
(not lorentz invariant)

Particles and SVs 
with 4-vectors+features

Particles  
(limited correlations) 

Graphs  
(Particles+correlations) 

2016 20202018

Progressively moving towards use of more info

Current collaboration results



• Autoencoders are gaining popularity in HEP just now
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Autoencoder Progression

Autoencoder 
Not smooth

Normalizing Flow 
   Non-Gaussian VAE 

Dawn of Time 20172015

Variational AE/GAN 
Smooth AE

Small latent space 
that encodes physics

Inputs smeared w/gaussian 
before latent space

Inputs transformed before  
entering latent space
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• Build an auto encoder (AE)


• Add an GAN to help AE 


• Additionally decorrelate with mass
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GAN supported AE

Take away: Mass Decorrelation+Good Simulation needed

Latent space forced to be decorrelated with mass

Inputs: High Level Features (Nsubjettiness/Jet masses/…)

Signal Extraction : Bump Hunter (it Failed) 

BB1 Dataset
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BuHuLaSpa 

Autoencoder with 1D latent space 
Latent space forced to be decorrelated with mass

• Bump hunting in the latent space

Inputs: High Level Features (Nsubjettiness/Jet masses/…)

Signal Extraction : None

Take Away:Training is critical to ensure good performance

BB1 Dataset



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Normalizing Flow

Take Away: single auto encoder even with NF is not enough 
                    too many anomalies (no clear signal)

Signal Extraction : Νone (No signal)

Inputs: High Level Features (Nsubjettiness/Jet masses/…)

Cut is too loose (may actually work)

BB1 Dataset



• VAE using particle inputs (RNN)
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Particle VAE

Select on  
Anomalous 

Events

Take Away: Works but preparation of inputs is critical

Inputs: Particle four vectors of the jet

Signal Extraction : None

BB1 Dataset



• Build a GraphNN Autoencoder


• Try with mean squared error loss 
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Particle Graph AE

Take Away: No good handle on loss

Inputs: Particle four vectors of the jet (Graph w/correlations)

Signal Extraction : Bump Hunter Algo

2.1σ

BB1 Dataset
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Weak Supervision
Sample A Sample B

VS

How do we separate two samples (one with anomalies)

Difference: Strategy:  Train the data in A agains B 

Challenge:  Must all be same in  
A and B
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More realistic example

How do we train samples with variations of populations of an anomaly
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Training Strategies

Topic Modeling/ 
Clustering

Classification 
W/O Labels

Likelihood 
Discrimination

p(x |x ∈ A) p(x |x ∈ B)

Separate out Sample 1  
from Sample 2 by  
hidden signal 

Split a histogram 
into multiple distributions 
by looking for separate 
regions



• Factorization: each jet mass 
distributions can be 
factorized


• QCD composition is the 
same for leading and 
subleading
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Factorized Topics

Use leading and trailing jet masses 
to make “topics”

Solve for the jet mass 1 and 2 that yield  
3 distinct categories

Take Away: Breaks down with small signal

Inputs: Jet mass of each jet 

Signal Extraction : None (did not work on BB1)

R&D Dataset



• Latent Dirichlet Allocation (LDA)


• Decluster jet and use splitting info


• Construct 2 hypotheses in data


• LDA minimization to get 2
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LDA

Take Away: LDA benefits from many event observables

Compute likelihood of two hypothesis to be consistent

BB1 Dataset
Inputs: Jet splittings from declustering

Signal Extraction : None (did not work)
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UCluster

Take Away: Hard with small signal

Inputs: Particle Objects

Signal Extraction : No signal 

R&D Dataset
Train a supervised network for 
jet classification 

Cluster in the latent space 
Scan clusters for anomaly 

https://arxiv.org/abs/2010.07106 

https://arxiv.org/abs/2010.07106
https://arxiv.org/abs/2010.07106


• CWOLA modified from original paper


• Mass inputs dimensionless 
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CWOLA

mjj (GeV)

Take Away: Works but needed to correct dimension

BB1 Dataset
Inputs: High level features

Signal Extraction : Bump fit(5σ)
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GIS(CWOLA+NF)

p(x |x ∈ A) p(x |x ∈ B)

Mass Side bandSignal mass

GIS normalizing flows trained   
conditional on the mass distribution
Scan mass window (250 GeV) 
Compute likelihood ratio (below)

Take Away: Normalizing Flow can help CWOLA style approach

Inputs: High level features

Signal Extraction : Note, but large signal

BB1 Dataset

Large and significant signal

https://arxiv.org/pdf/2001.04990.pdf 

https://arxiv.org/pdf/2001.04990.pdf
https://arxiv.org/pdf/2001.04990.pdf
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Tag N’Train

Would benefit more 
from mass 

decorrelation

4σ at BB1 
resonance 

Take Away: Avoid mass windows by relying on the different jets
Signal Extraction : Bump Fit

BB1 Dataset
Inputs: High level features
Use dijet signature play one jet off the other  
Start with an autoencoder on jet to split sample 
Run CWOLA on other jet with split sample

https://arxiv.org/abs/2002.12376 

https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2002.12376


• Use supervised training to catch a               and not  

41Semi-Supervision

A small amount labeled data

A large amount of unlabelled data

Autoencoder Supervised Training

(i.e. Find anamalous tulips not anomalous something else in LHC a detector glitch)
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Training Strategies

Just do a  
supervised training

Use the latent space 
for autoencoder/ 

supervised 

Construct Space  
from autoencoders 

on sig/bkg

Wrong 
Signals Backgroundvs

Search for new physics 
by using an incorrect signal

Wrong 
SignalsBackground vs

Use classifier loss for  
search

Wrong Signals

Background

y-
ax

is
x-

ax
is

Use classifier to isolate 
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Just Training 

Use R&D dataset and do a fully 
supervised training 


Use the output discriminator


Try to see a signal from that

Take Away: Signal needs to be close to the hidden signal
Signal Extraction : None

BB1 Dataset
Inputs: High level features

Two submissions tried  
No Significant excess in either



44QUasi-Anomalous 
Knowledge(QUAK)

Use Normalizing 
Flow Autoencoders 

Strategy: Train autoencoders on background and Signals


Choose a broad range of signals that capture physics of interest


Probe the result space for physics-like anomalies
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QUAK

https://arxiv.org/pdf/2011.03550.pdf 

QUAK approaches or beats supervised NNs when signal is similar 

https://arxiv.org/pdf/2011.03550.pdf
https://arxiv.org/pdf/2011.03550.pdf
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QUAK

Take Away: Signal Libraries need to be close to hidden signal
Signal Extraction : Bump Fit in categories split across loss space

BB1 Dataset
Inputs: High level features (Nsubjettiness/Jet masses/…)

6.3σ significance Mass dependence exists, but not large 
Due to construction of loss space 

P
re

se
le

ct
io

n



• Generally with anomaly approaches 


• There has been an emphasis to train on data


• Training on data simplifies our ability to process data


• No need to correct for simulation/data disagreements


• Regions where data/simulation don’t agree can be probed


• No fancy methods to probe these regions w/complicated fits


• Training on data throws away some interpretability of result


• Not clear what features may drive an access
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Training on Data



• While I didn’t discuss it here 


• Nobody found an excess in black box 3


• Black box 2 was empty

48A fun look at resultsBlack Box 1
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Black Box 2
Reminder no signal



50Observations
• There is no catch all solution 


• Many of the best approaches combine multiple ideas


• A diversity of approaches helps robustness


• LHC Olympics focused on resonant processes


• Non-resonant processes make background extraction harder 


• Can we deal with complex topologies ( such as black box 3)


• Data processing pipeline is assumed to be offline reconsturction


• Could envision some approach in the triggers


• How can we actually compare sensitivities if we don’t have a model?
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Performance Observations

Semi-supervised?

+Weak  
supervision???

Normalizing Flow approaches stood out 
So did Observable based encoding(not sure why)

Speculate line



• The LHC Olympics dataset is a great tool to use


• Sample is tractable and easy to put together 


• Shows the how a group can come together


• It would be fun to merge all of these strategies 


• Perhaps we could make a much stronger discovery?


• These kind of exercises are needed for the future
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Preparing for open data



• Its important to make simple tractable datasets


•  There are a lot of steps towards doing an analysis


• There is also some black magic that goes in


• Run your studies by somebody on the experiment


• A broad range of anomaly detection algorithms exist


• Anomaly detection will not just come from one method


• The diversity of approaches aids in building a robust discovery
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Strategy for future



Thanks to the organizers 
for inviting me!
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Playing with Prior



56

Observation

Take Away: Works but needed to correct dimension

Inputs: High level features

Signal Extraction : Bump fit

CWOLA works really well  
for large signals 

But for small signals  
Autoencoders tend to win 

You need enough events  
in your data to separate them 
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Variation of Encoder
Varying the encoder architecture   
can allow for  a broad range of possibilities

Derived  
Inputs

Particle  
Inputs

Graphs
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Variation of Architecture
Varying the encoder architecture   
can allow for  a broad range of possibilities

Autoencoder

Variational 
Autoencoder

Normalizing 
Flow



• Running just a training got it to work 


• Was able to observe 5 standard deviations
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CWOLA style approach

mjj (GeV) Contrasting 
with Autoencoders 

CWOLA

Excess at 3500 instead of 3800



• Use R&D dataset and do a fully 
supervised training 


• Use the output discriminator


• Try to see a signal from that
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Method 12:Deep Ensemble

Observation:Low noise robust density estimation is key

• Try with both a CNN on jet images and BDT on observables




• Sample independence: each jet of a dijet can be treated as 
independent and for QCD its composition is the same for leading 
and subleading


• Factorization: jet mass distributions can be factorized


•

61

Method13:Factorized 
Topics



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Method 10: Salad+CWOLA

Observation:Works well on jets, some limiations from using jet images 
Would benefit more from mass decorrelation



• Variational Autoencoder using particle inputs (RNN)
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Method1:VRNN 

Select on  
Anomalous 

Events

Observation: Works but preparation of inputs is critical



• Build an auto encoder (AE)


• Add an GAN to help AE 


• Additionally decorrelate with mass


• Compute a distance (ED) for anom
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Method 3:GAN-AE

Observation: Mass Decorrelation+Good Simulation needed

Autoencoder with 10D latent space 
Latent space forced to be decorrelated with mass



• Latent Dirichlet Allocation (LDA)


• Decluster jet and use splitting info


• Construct 2 hypotheses in data


• Generated through LDA approach
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Method 4:LDA

Observation: LDA benefits from many observables

Compute likelihood of two hypoth to be consistent



• Build a GraphNN Autoencoder


• Try with mean squared error loss 


• Try with a permuation invariant loss (robust against physics)
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Method 5: Particle Graph AE

Observation: No good handle on loss



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass

67Method 6: Regularized 
Likelihood

Observation: A single auto encoder even with NF is not enough 
too many anomalies (no clear signal)



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Method 8: CWoLa

Observation:Approach works for single jet resonances



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Method 9: Tag N’Train

Observation:Works well on jets, some limiations from using jet images 
Would benefit more from mass decorrelation



• Guassian Iterative Slicing


• Cut on high loss 


• Decorrelate loss with mass
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Method 11:GIS

Observation:Low noise robust density estimation is key
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Method14:QUAK


