

National and Kapodistrian University of Athens, Greece Faculty of Physics

Department of Nuclear and Particle Physics

A study of the nuclear structure in the even-even Yb isotopes

A. Zyriliou, T. J. Mertzimekis, A. Chalil, P. Vasileiou, E. Mavrommatis,

Dennis Bonatsos, Andriana Martinou, S. Peroulis, N. Minkov

PhD Candidate and Research PhD Fellow by Hellenic Foundation for Research and

Innovation (HFRI) at NKUA

- 1. Area of interest
- 2. Motivation
- 3. Related Quantities & Theoretical Models
- 4. Results
- 5. Conclusion & Future Steps

1. Area of Interest

- 1. Nuclear deformation
- 2. Shape coexistence, proxy-SU(3) (e.g., ¹⁵⁶Sm, ¹⁶⁶Dy, ¹⁷⁶Yb ...)
- 3. The isotopes of ₇₀Yb with A~170 appear to have rotational properties

2. Motivation

- Lack of experimental data for lifetimes of ¹⁷⁸Yb and energy states in unstable ¹⁸⁰Yb
- Focus on the calculation of B(E2; $0^+ \rightarrow 2^+$) values, related quadrupole moments Q and deformation parameter $\beta 2$, which exhibit quadratic distortion
- The results are compared to available experimental data¹ and can serve as a guide for future experimental studies in the unstable neutron-rich Yb isotopes

Aikaterini Zyriliou | African Nuclear Physics Conference 2021 20-24/9/21 [1] B.

Image Source: National Nuclear Data Center, http://www.nndc.bnl.gov/ [1] B. Pritychenko et al., Atom. Data Nucl. Data Tabl., 107:1–139, (2016)

3. Related Quantities & Theoretical Models

✓ The intrinsic electric quadrupole moment (Q₀) is defined in the intrinsic frame of the nucleus. The reduced electric quadrupole transition probability B(E2) contains information about the structure of the low–lying levels of nuclei. Another quantity that is quite useful, despite being model–dependent, is the deformation parameter, β_2

$$Q_0 = \left[\frac{16\pi}{5} \frac{B(E2)\uparrow}{e^2}\right]^{1/2} \text{ (in barns)} \qquad Q(I,K) = \frac{3K^2 - I(I+1)}{(I+1)(2I+3)}Q_0 \qquad \beta_2 = \left(\frac{4\pi}{3ZR_0^2}\right) \left[\frac{B(E2)\uparrow}{e^2}\right]^{1/2}$$

✓ Nine (9) theoretical models were used in this work: PhM, FRDM, HFBCS-MSk7, HFBM-Gogny, RHF-NL3*, HFB–UNEDF1, IBM-1 and the recently developed Proxy and Pseudo SU(3) Models

✓ Numerical results for energy ratios with the Exactly Separable David-son (ESD), Exactly Separable Morse, Exactly Separable Woods Saxon, Deformation Dependent Mass Davidson (DDMD) and Deformation Dependent Mass Kratzer (DDMK)

Interacting Boson Model (IBM-1) Calculations

For each N_B (N_B = 12 - 17) nearly 20'000 calculations have been carried out with the IBAR program. Results were obtained by fitting five ratios to experimental data for each isotope. The method leaves ζ and χ as free parameters in the range (0.00 to 1.00) for ζ and $(-\sqrt{7}/2)$ to 0.00) for χ with step 0.01, where $\chi = -\sqrt{7}/2$ is the limit of SU(3) symmetry.

Aikaterini Zyriliou | African Nuclear Physics Conference 2021 20-24/9/21

A. Zyriliou *et al.,* (2021) (under review) E. A. McCutchan *et al.* Phys. Rev. C, 69:064306 (2004) ⁶

Interacting Boson Model (IBM-1) Calculations

Table 11: Experimental^a [2] and calculated $B(E2; J_i \to J_f)(e^2b^2)$ values for $_{70}$ Yb isotopes.

	¹⁶⁴ Yb		¹⁶⁶ Yb		¹⁶⁸ Yb		¹⁷⁰ Yb	
Transition $J_i \to J_f$	Experiment	IBM	Experiment	IBM	Experiment	IBM	Experiment	IBM
$0_1^+ \to 2_1^+$	4.33 (14)	4.769	5.20 (20)	5.139	5.75 (12)	5.409	5.721 (70)	5.600
$2^+_1 \rightarrow 0^+_1$	0.866 (28)	0.954	1.035 (54)	1.028	1.151 (38)	1.082	1.124 (34)	1.120
$4^+_1 \rightarrow 2^+_1$	1.381 (48)	1.381^{b}	1.474 (49)	1.474^{b}	-	1.543	1.607^{d}	1.607^{b}
$6^+_1 \rightarrow 4^+_1$	1.472 (53)	1.530	1.577 (65)	1.630	-	1.688	2.302^{d}	1.772
$8^+_1 \rightarrow 6^+_1$	1.706 (586)	1.582	1.734 (217)	1.686	-	1.740	2.014 (168)	1.842
$10_1^+ \to 8_1^+$	1.600 (640)	1.573	1.680 (867)	1.684	-	1.739	1.991 (140)	1.860
$12^+_1 \rightarrow 10^+_1$	1.600 (586)	1.513	1.463(759)	1.637	-	1.698	1.499 (117)	1.839
$14^+_1 \rightarrow 12^+_1$	1.280 (373)	1.410	1.355 (813)	1.550	-	1.624	-	1.783
$16_1^+ \to 14_1^+$	-	1.266	-	1.427	-	1.518	-	1.696
$2^+_{\gamma} \rightarrow 2^+_1$	-	0.183	-	0.128	0.051 (6)	0.073	0.027 (6)	0.021
$2^+_\gamma ightarrow 0^+_1$	-	0.037	-	0.035	0.028 (4)	0.028^{b}	0.015 (3)	0.015
	¹⁷² Yb	,	¹⁷⁴ Ył		¹⁷⁶ Yl)	¹⁷⁸ Yb	,
Transition $J_i \to J_f$	¹⁷² Yb Experiment	IBM	¹⁷⁴ Ył Experiment	IBM	¹⁷⁶ Ył Experiment) IBM	¹⁷⁸ Yb Experiment	, IBM
$\frac{\text{Transition } J_i \to J_f}{0_1^+ \to 2_1^+}$	¹⁷² Yb Experiment 6.09 (15)	IBM 5.965	¹⁷⁴ Yt Experiment 5.85 (16)	IBM 5.676	¹⁷⁶ Yl Experiment 5.189 (89)	IBM 5.516	¹⁷⁸ Yb Experiment —	1BM 4.705
$\begin{tabular}{ c c c }\hline Transition $J_i \rightarrow J_f$\\\hline $0^+_1 \rightarrow 2^+_1$\\\hline $2^+_1 \rightarrow 0^+_1$\\\hline \end{tabular}$	¹⁷² Yb Experiment 6.09 (15) 1.205 (11)	IBM 5.965 1.193	¹⁷⁴ Yt Experiment 5.85 (16) 1.160 (40)	IBM 5.676 1.135	¹⁷⁶ Yl Experiment 5.189 (89) 1.072 (41)	1BM 5.516 1.103	¹⁷⁸ Yt Experiment –	IBM 4.705 0.941
$\begin{tabular}{ c c c }\hline Transition $J_i \rightarrow J_f$\\ \hline $0^+_1 \rightarrow 2^+_1$\\ $2^+_1 \rightarrow 0^+_1$\\ $4^+_1 \rightarrow 2^+_1$\\ \hline \end{tabular}$	¹⁷² Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114)	IBM 5.965 1.193 1.710 ^b	¹⁷⁴ Yt Experiment 5.85 (16) 1.160 (40) 1.616 (52)	IBM 5.676 1.135 1.616 ^b	¹⁷⁶ Yl Experiment 5.189 (89) 1.072 (41) 1.582 (146)	IBM 5.516 1.103 1.582 ^b	¹⁷⁸ Yt Experiment – –	IBM 4.705 0.941 1.342
$\begin{array}{c} \text{Transition } J_i \rightarrow J_f \\ \hline 0_1^+ \rightarrow 2_1^+ \\ 2_1^+ \rightarrow 0_1^+ \\ 4_1^+ \rightarrow 2_1^+ \\ 6_1^+ \rightarrow 4_1^+ \end{array}$	¹⁷² Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114) 1.818 (170)	IBM 5.965 1.193 1.710 ^b 1.885	¹⁷⁴ Yt Experiment 5.85 (16) 1.160 (40) 1.616 (52) 2.135 (288)	IBM 5.676 1.135 1.616 ^b 1.766	¹⁷⁶ Yl Experiment 5.189 (89) 1.072 (41) 1.582 (146) 1.746 (129)	IBM 5.516 1.103 1.582 ^b 1.741	178 Yt Experiment	IBM 4.705 0.941 1.342 1.470
$\begin{tabular}{ c c c c }\hline & Transition $J_i \to J_f$ \\ \hline $0_1^+ \to 2_1^+$ \\ $2_1^+ \to 0_1^+$ \\ $4_1^+ \to 2_1^+$ \\ $6_1^+ \to 4_1^+$ \\ $8_1^+ \to 6_1^+$ \\ \hline $8_1^+ \to 6_1^+$ \\ \hline \end{tabular}$	172 Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114) 1.818 (170) 2.273 (227)	IBM 5.965 1.193 1.710 ^b 1.885 1.963	¹⁷⁴ Yt Experiment 5.85 (16) 1.160 (40) 1.616 (52) 2.135 (288) 2.239 (121)	IBM 5.676 1.135 1.616 ^b 1.766 1.825	¹⁷⁶ Yl Experiment 5.189 (89) 1.072 (41) 1.582 (146) 1.746 (129) 1.758 (293)	IBM 5.516 1.103 1.582 ^b 1.741 1.811	178 Yt Experiment	IBM 4.705 0.941 1.342 1.470 1.518
$\begin{tabular}{ c c c c }\hline & Transition $J_i \to J_f$ \\ \hline $0^+_1 \to 2^+_1$ \\ $2^+_1 \to 0^+_1$ \\ $4^+_1 \to 2^+_1$ \\ $6^+_1 \to 4^+_1$ \\ $8^+_1 \to 6^+_1$ \\ $10^+_1 \to 8^+_1$ \\ \hline $10^+_1 \to 8^+_1$ \\ \hline \end{tabular}$	172 Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114) 1.818 (170) 2.273 (227) 2.131 (131)	IBM 5.965 1.193 1.710 ^b 1.885 1.963 1.989	174 Yt Experiment 5.85 (16) 1.160 (40) 1.616 (52) 2.135 (288) 2.239 (121) 1.933 (127)	IBM 5.676 1.135 1.616 ^b 1.766 1.825 1.838	176 Yl Experiment 5.189 (89) 1.072 (41) 1.582 (146) 1.746 (129) 1.758 (293) 1.875 (176)	IBM 5.516 1.103 1.582 ^b 1.741 1.811 1.833	178 Yt Experiment	IBM 4.705 0.941 1.342 1.470 1.518 1.524
$\begin{tabular}{ c c c c }\hline & $Transition $J_i \to J_f$ \\ \hline $0_1^+ \to 2_1^+$ \\ $2_1^+ \to 0_1^+$ \\ $4_1^+ \to 2_1^+$ \\ $6_1^+ \to 4_1^+$ \\ $8_1^+ \to 6_1^+$ \\ $10_1^+ \to 8_1^+$ \\ $12_1^+ \to 10_1^+$ \\ \hline \end{tabular}$	172 Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114) 1.818 (170) 2.273 (227) 2.131 (131) 2.443 (341)	IBM 5.965 1.193 1.710 ^b 1.885 1.963 1.989 1.977	174 Yf Experiment 5.85 (16) 1.160 (40) 1.616 (52) 2.135 (288) 2.239 (121) 1.933 (127) 2.129 (133)	IBM 5.676 1.135 1.616 ^b 1.766 1.825 1.838 1.821	176 Yl Experiment 5.189 (89) 1.072 (41) 1.582 (146) 1.746 (129) 1.758 (293) 1.875 (176) 1.816 (234)	IBM 5.516 1.103 1.582 ^b 1.741 1.811 1.833 1.819	178 Yt Experiment	BM 4.705 0.941 1.342 1.470 1.518 1.524 1.499
$\begin{array}{c} \text{Transition } J_i \to J_f \\ \hline 0_1^+ \to 2_1^+ \\ 2_1^+ \to 0_1^+ \\ 4_1^+ \to 2_1^+ \\ 6_1^+ \to 4_1^+ \\ 8_1^+ \to 6_1^+ \\ 10_1^+ \to 8_1^+ \\ 12_1^+ \to 10_1^+ \\ 14_1^+ \to 12_1^+ \end{array}$	172 Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114) 1.818 (170) 2.273 (227) 2.131 (131) 2.443 (341) 2.239 (⁺³⁴¹)	IBM 5.965 1.193 1.710 ^b 1.885 1.963 1.989 1.977 1.931	174 YH Experiment 5.85 (16) 1.160 (40) 1.616 (52) 2.135 (288) 2.239 (121) 1.933 (127) 2.129 (133) 1.846 (462)	IBM 5.676 1.135 1.616 ^b 1.766 1.825 1.838 1.821 1.779	176 Yl Experiment 5.189 (89) 1.072 (41) 1.582 (146) 1.746 (129) 1.758 (293) 1.875 (176) 1.816 (234) 1.640 (352)	IBM 5.516 1.103 1.582 ^b 1.741 1.811 1.833 1.819 1.776	178 Yt Experiment	BM 4.705 0.941 1.342 1.470 1.518 1.524 1.499 1.447
$\begin{tabular}{ c c c c } \hline Transition $J_i \to J_f$ \\ \hline $0_1^+ \to 2_1^+$ \\ $2_1^+ \to 0_1^+$ \\ $4_1^+ \to 2_1^+$ \\ $6_1^+ \to 4_1^+$ \\ $8_1^+ \to 6_1^+$ \\ $10_1^+ \to 8_1^+$ \\ $12_1^+ \to 10_1^+$ \\ $14_1^+ \to 12_1^+$ \\ $16_1^+ \to 14_1^+$ \\ \hline \end{tabular}$	172 Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114) 1.818 (170) 2.273 (227) 2.131 (131) 2.443 (341) 2.239 (⁺³⁴¹) 2.239 (⁺³⁴¹)	IBM 5.965 1.193 1.710 ^b 1.885 1.963 1.989 1.977 1.931 1.856	174 Yf Experiment 5.85 (16) 1.160 (40) 1.616 (52) 2.135 (288) 2.239 (121) 1.933 (127) 2.129 (133) 1.846 (462)	IBM 5.676 1.135 1.616 ^b 1.766 1.825 1.838 1.821 1.779 1.714	176 YI Experiment 5.189 (89) 1.072 (41) 1.582 (146) 1.746 (129) 1.758 (293) 1.875 (176) 1.816 (234) 1.640 (352)	IBM 5.516 1.103 1.582 ^b 1.741 1.811 1.833 1.819 1.705	178 Yt Experiment	IBM 4.705 0.941 1.342 1.470 1.518 1.524 1.499 1.447 1.371
$\begin{tabular}{ c c c c } \hline Transition $J_i \to J_f$ \\ \hline $0_1^+ \to 2_1^+$ \\ $2_1^+ \to 0_1^+$ \\ $4_1^+ \to 2_1^+$ \\ $6_1^+ \to 4_1^+$ \\ $8_1^+ \to 6_1^+$ \\ $10_1^+ \to 8_1^+$ \\ $12_1^+ \to 10_1^+$ \\ $14_1^+ \to 12_1^+$ \\ $16_1^+ \to 14_1^+$ \\ $2_\gamma^+ \to 2_1^+$ \\ \hline \end{tabular}$	172 Yb Experiment 6.09 (15) 1.205 (11) 1.710 (114) 1.818 (170) 2.273 (227) 2.131 (131) 2.443 (341) 2.239 ($^{+341}_{-256}$) - 0.012 (1) ^{c,e}	IBM 5.965 1.193 1.710 ^b 1.885 1.963 1.989 1.977 1.931 1.856 0.015	174 Yf Experiment 5.85 (16) 1.160 (40) 1.616 (52) 2.135 (288) 2.239 (121) 1.933 (127) 2.129 (133) 1.846 (462) - 0.014 (3)	IBM 5.676 1.135 1.616 ^b 1.766 1.825 1.838 1.821 1.779 1.714 0.010	176 YI Experiment 5.189 (89) 1.072 (41) 1.582 (146) 1.746 (129) 1.758 (293) 1.875 (176) 1.816 (234) 1.640 (352)	IBM 5.516 1.103 1.582 ^b 1.741 1.811 1.833 1.819 1.776 1.705 0.064	178 Yt	IBM 4.705 0.941 1.342 1.470 1.518 1.524 1.499 1.447 1.371 0.052

Lack of experimental data!

Table 8: Possible nuclear shapes as a function of the deformation parameters β_2 and γ .

Spherical:	$\beta_2 = 0$
Prolate:	$\beta_2 > 0, \gamma = 0^\circ$
Oblate:	$\beta_2 > 0, \gamma = 60^{\circ}$
Triaxial:	$\beta_2 > 0, \ 0^{\circ} < \gamma < 60^{\circ}$

$$R = \frac{E(2^+_{\gamma})}{E(2^+_1)} \quad \sin(3\gamma) = \frac{3}{2\sqrt{2}}\sqrt{1 - \left(\frac{R-1}{R+1}\right)^2}$$

Fig. 5: IBM-1 predictions for γ , obtained from Eq. (31), compared to experimental values extracted from ratios of the γ bandhead to the first 2⁺ state. Experimental uncertainties are smaller than the data symbols.

Interacting Boson Model (IBM-1) Calculations

These specific ratios can explain the low–spin structure of the collective even–even nuclei.

Aikaterini Zyriliou | African Nuclear Physics Conference 2021 20-24/9/21

A. Zyriliou et al., (2021) (under review)

4. Results for ¹⁶⁴⁻¹⁸⁰Yb isotopes

Fig. 13: Numerical results for important energy ratios obtained by ESD, ES Morse, ES Woods–Saxon, DDMD and DDMK analytical solutions of the Bohr Hamiltonian and IBM–1 are compared to experimental values. Experimental uncertainties are smaller than the data symbols.

4. Results for ¹⁶⁴⁻¹⁸⁰Yb isotopes

Table 15: Values of Q in Units of b (see Fig. 16(b)). See text, for details of their calculation. ("Exp" values in first column extracted from experimental $B(E2; 0^+_1 \rightarrow 2^+_1)$ [27] using rotational model equations 1,3.)

Isotope	"Exp"	PhM	FRDM	HFBCS MSk7	HFB Gogny	HFB UNEDF1	RHB NL3*	IBM-1	Proxy SU(3)	Pseudo SU(3)
¹⁶⁴ Yb	-1.885 (31)	-1.890	-1.905	-1.918	-1.888	-1.942	-1.835	-1.978	-1.891	-1.688
166 Yb	-2.066 (42)	-2.072	-1.988	-2.012	-2.166	-2.173	-2.048	-2.054	-1.942	-1.695
168 Yb	-2.172 (25)	-2.139	-2.060	-2.011	-2.257	-2.278	-2.204	-2.107	-1.989	-1.802
170 Yb	-2.167 (14)	-2.171	-2.137	-2.010	-2.308	-2.307	-2.268	-2.144	-2.024	-1.898
172 Yb	-2.236 (30)	-2.247	-2.135	-2.326	-2.299	-2.298	-2.238	-2.213	-2.055	-1.879
174 Yb	-2.191 (33)	-2.187	-2.048	-2.264	-2.256	-2.259	-2.188	-2.158	-2.013	-1.886
176 Yb	-2.064 (19)	-2.057	-1.975	-2.103	-2.191	-2.201	-2.157	-2.128	-1.973	-1.860
178 Yb	_	_	-1.973	-2.039	-2.125	-2.144	-2.125	-1.965	-1.914	-1.799
$^{180}\mathrm{Yb}$	-	_	-1.972	1.895	-2.085	-2.098	-2.099	_	-1.834	-1.806

Isotope	Exp [27]	PhM	FRDM	HFBCS MSk7	HFB Gogny	HFB UNEDF1	RHB NL3*	IBM-1	Proxy SU(3)	Pseudo SU(3)
¹⁶⁴ Yb	4.33 (14)	4.351	4.423	4.484	4.342	4.596	4.105	4.769	4.358	3.474
¹⁶⁶ Yb	5.20 (20)	5.230	4.814	4.933	5.718	5.754	5.110	5.139	4.595	3.502
¹⁶⁸ Yb	5.75 (12)	5.574	5.171	4.928	6.206	6.321	5.917	5.409	4.822	3.957
¹⁷⁰ Yb	5.721 (70)	5.743	5.565	4.922	6.491	6.485	6.267	5.600	4.990	4.388
172 Yb	6.09 (15)	6.152	5.554	6.595	6.441	6.436	6.106	5.965	5.146	4.303
¹⁷⁴ Yb	5.85(16)	5.828	5.112	6.244	6.200	6.217	5.832	5.676	4.936	4.336
¹⁷⁶ Yb	5.189 (89)	5.157	4.751	5.387	5.849	5.902	5.667	5.516	4.742	4.216
¹⁷⁸ Yb	-	_	4.745	5.064	5.501	5.602	5.501	4.705	4.463	3.945
¹⁸⁰ Yb	_	_	4.739	4.374	5.297	5.361	5.368	_	4.098	3.975

4. Results for ¹⁶⁴⁻¹⁸⁰Yb isotopes

Table 12: Extrapolated values and Raman's global fit values for 178 Yb and 180 Yb.

4	Energy	Local Fit	Global Fit 25		
А	E_{2^+} (keV)	$\tau_{2^{+}}$ (ps)	τ_{2^+} (ps)		
178	84.0 (3)	2580 (73)	2825 (499)		
180	96.90 (33)	-	-		

A. Zyriliou et al., (2021) (under review)

5. Conclusion & Future Steps

- ✓ The nuclear properties of the Ytterbium isotopes and their evolution as the neutron number increases has been the major subject in this work
- ✓ The collective behavior of the even-even ¹⁶⁴⁻¹⁸⁰Yb isotopes was investigated using several well-established theoretical models in synergy with available experimental data.
- ✓ The nuclear observables examined in this work (energies, reduced transition probabilities etc.) for a number of permanently deformed Yb isotopes are calculated in agreement with available experimental results
- Predictions have been made for some observables of ^{178,180}Yb isotopes for which no experimental data currently exist
- ✓ We hope this work can serve as a reference point for future experimental and theoretical work in this mass region, which will provide useful information towards understanding the nuclear structure as one moves closer to the neutron dripline
- ✓ It can also serve as useful input for incorporating nuclear structure in models for nuclear astrophysics processes that involve Yb and other neighboring nuclei (e.g. Hf) in their pathways to produce heavier-mass isotopes in the Universe

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Aikaterini Zyriliou PhD Candidate

This research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 101742/2019)

