

Contribution ID: 122

Type: Oral

Radiative proton-capture cross-sections with ^{112,114}**Cd**

Wednesday, 22 September 2021 10:15 (20 minutes)

The reaction network in the neutron-deficient part of the nuclear chart around A~100 contains several nuclei of importance to astrophysical processes, such as the *p*-process. This work reports on the results from recent experimental studies of the radiative proton-capture reactions 112,114 Cd(p, γ)^{113,115}In. Isotopically enriched 112 Cd and 114 Cd targets have been used for the determination of the cross sections, for proton beam energies residing inside the respective Gamow windows for each reaction. Two different techniques, the in-beam γ -ray spectroscopy and the activation method have been implemented, where the latter is considered mandatory to account for the presence of low-lying isomers in 113 In and 115 In, with energies of E≈392 keV, and E≈336 keV, respectively. Following the measurement of the cross sections, the astrophysical *S* factors have been subsequently deduced. The experimental results are compared to detailed Hauser-Feshbach theoretical calculations carried out with TALYS v1.95.

Primary author: VASILEIOU, Polytimos (National and Kapodistrian University of Athens)

Co-authors: Prof. MERTZIMEKIS, Theo J. (National and Kapodistrian University of Athens); Dr CHALIL, Achment (IRFU, CEA, Université Paris-Saclay); Ms FAKIOLA, Christina (National and Kapodistrian University of Athens); Mr KARAKASIS, Ioannis (National and Kapodistrian University of Athens); Ms KOTSOVOLOU, Anastasia (National and Kapodistrian University of Athens); Ms ZYRILIOU, Aikaterini (National and Kapodistrian University of Athens); Dr AXIOTIS, Michael (INPP, NCSR "Demokritos"); Dr LAGOYANNIS, Anastasios (INPP, NCSR "Demokritos")

Presenter: VASILEIOU, Polytimos (National and Kapodistrian University of Athens)

Session Classification: Session 6

Track Classification: Nuclear Astrophysics