Damping of the ISGMR in ⁹⁰Zr and ¹²⁰Sn

A. Bahini,^{1,*} I.T. Usman,¹ R. Neveling,² J. Carter,¹ P. Adsley,^{1,2} N. Botha,²

J.W. Brümmer,³ L.M. Donaldson,² M.B. Latif,¹ K.C.W. Li,² Z. Mabika,⁴ C.S.

Moodley,¹ P. von Neumann-Cosel,⁵ S.D. Olorunfunmi,¹ P. Papka,^{2,3} L. Pellegri,^{1,2}

B. Rebeiro,⁴ E. Sideras-Haddad,¹ F.D. Smit,² S. Triambak,⁴ and J.J. van Zyl³

¹School of Physics, University of the Witwatersrand, Johannesburg, South Africa

²*iThemba Laboratory for Accelerator Based Sciences, Somerset West, South Africa* ³Department of Physics, University of Stellenbosch, South Africa

⁴Department of Physics, University of the Western Cape, Cape Town, South Africa

⁵Institut für Kernphysik, Technische Universität Darmstadt, Germany

Giant Resonances (GRs) are considered to be high frequency shape-vibrations of the nucleus. Since the new millennium it became apparent that the IsoScalar Giant Quadrupole Resonance (ISGQR) exhibits fine structure that is independent of probe, and soon after that it was shown that other GRs also exhibit such fine structure. As such, this fine structure as an additional GR observable has been shown to be a useful tool to determine the damping mechanism of different shape-vibrations using the Wavelet Analysis technique.

The ISGMR was excited in ⁹⁰Zr and ¹²⁰Sn by using inelastic α -particle scattering measurements acquired with an $E_{\alpha} = 200$ MeV beam at $\theta_{\text{Lab}} = 0^{\circ}$ and 4° . The high energy-resolution K600 magnetic spectrometer at iThemba LABS was used to detect the scattered alpha particles and an experimental energy-resolution of ~ 70 keV (FWHM) was achieved. This enabled the fine structure in the excitation energy region of the ISGMR to be investigated. Due to the limitations in angular acceptance and resolution, the E0 strength distributions in the present study was determined using the Difference-of-Spectra (DoS) method. Here, the L = 0 multipole excited (ISGMR E0 strength) has a maximum at $\theta_{\text{Lab}} = 0^{\circ}$ allowing the background from all other multipoles to be subtracted using an angle cut from the $\theta_{\text{Lab}} = 4^{\circ}$ measurements where the L = 0 has a deep minimum.

The aim of the work to be presented is to investigate the damping mechanism of the ISGMR in 90 Zr and 120 Sn. The *E*0 strength distribution in 90 Zr and 120 Sn will be discussed and compared to theoretical predictions from the Phonon-Phonon Coupling (PPC) model.

^{*} armand.bahini@wits.ac.za