Search for $E 0$ transitions in ${ }^{54} \mathrm{Mn}$ via electron-pair spectroscopy

A.A. Avaa, ${ }^{1,2,3}$ T. Kibédi, ${ }^{4}$ P. Jones, ${ }^{3}$ I.T. Usman, ${ }^{2}$ M.V. Chisapi, ${ }^{3,5}$ J.T.H. Dowie, ${ }^{4}$ A.E.Stuchbery, ${ }^{4}$
${ }^{1}$ Department of Physics, Joseph Sarwuan Tarka University, Makurdi, P.M.B. 2373, Nigeria
${ }^{2}$ School of Physics, University of the Witwatersrand, Johannesburg, 2000, South Africa ${ }^{3}$ Department of Subatomic Physics, iThemba LABS, P.O. Box 722, Somerset West 7129, South Africa
${ }^{4}$ Department of Nuclear Physics, Australian National University, Canberra, ACT 2601, Australia
${ }^{5}$ Physics Department, Stellenbosch University, Matieland 7602, South Africa

The low energy structure of nuclei close to the doubly magic ${ }^{40} \mathrm{Ca}$ and ${ }^{56} \mathrm{Ni}$ are driven by collective excitations, including shape coexistence and super-deformation [1]. On the other hand, the $\mathrm{N}=28$ shell closure is also strongly influencing the nuclei between $\mathrm{N}=\mathrm{Z}=20$ and 28 . Electric monopole, E0 transitions are often cited as excellent probes to explore the interactions of collective excitations with different deformations. Strong E0 transitions are reported in ${ }^{54} \mathrm{Fe}$ [2] and in ${ }^{52} \mathrm{Cr}$ [3], however most of the E0 transitions in the region has not been observed. We shall report on a detailed conversion electron and electron-positron pair conversion study of ${ }^{54} \mathrm{Mn}$, a $\mathrm{N}=29, \mathrm{Z}=25$ nucleus next to ${ }^{52} \mathrm{Cr}$ and ${ }^{54} \mathrm{Fe}$. Excited states up to about 3 MeV energy have been populated using the ${ }^{54} \mathrm{Cr}(\mathrm{p}, \mathrm{n})^{54} \mathrm{Mn}$ reaction at 5.4 MeV bombarding energy at the ANU HIAS accelerator. Electron and electron-positron pair conversion coefficients have been measured with the Super-e spectrometer [4]. The 1579 keV transition from the $1634 \mathrm{keV} 2^{+}$state has a conversion coefficient larger than the pure M1 or E2 value, indicating a significant E0 contribution. In this talk we describe the experiments and will present a preliminary interpretation of the results.
[1] K. Hyde and J.L. Wood, Rev. Mod. Phys. 83 (2011) 1467
[2] T.K. Eriksen, PhD thesis, ANU (2018)
[3] J.T.H. Dowie, PhD thesis, ANU (2021)
[4] T.K. Eriksen et al., Phys. Rev. C 102 (2020) 024320

