Are LaBr₃:Ce detectors the optimum instruments for naturally occurring radioactive materials (NORM) activity measurements?

M. Bashir¹, R.T. Newman² and P. Jones³

¹Department of Physics, Ibrahim Badamasi Babangida University Lapai, Nigeria.

²Department of Physics, Stellenbosch University, South Africa.

³Department of Subatomic Physics, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), South Africa.

Emails: mbashir@ibbu.edu.ng, bashirmunirat@yahoo.com

Abstract

LaBr₃:Ce (2" x 2") detectors were used to measure soil samples placed in Marinelli beakers in singles and coincidence modes. Time-stamped data were acquired and background removed offline by using photon time-of-flight in addition to measurement of the two photon energies in coincidence. Coincident gamma-ray pairs from 238 U (214 Bi) and 232 Th (208 Tl) series were identified in measured samples. The activity concentrations of 238 U and 232 Th series radionuclides inside the samples were determined in both singles and coincidence modes. The internal activity of the LaBr₃:Ce detector increases the MDA at 1460.8 keV and 2614.5 keV, which limits the measurement of 40 K radionuclide with low activity concentration in singles mode. The measured internal activity of 138 La in the LaBr₃:Ce detector crystal is $^{263.8} \pm 26.8$ Bq kg⁻¹ which is comparable to the calculated activity of 293.3 Bq kg⁻¹. The suitability of the use of these detectors for NORM measurements was evaluated.