

Contribution ID: 194

Type: Oral

Are LaBr3:Ce detectors the optimum instruments for naturally occurring radioactive materials (NORM) activity measurements?

Wednesday, 22 September 2021 12:40 (20 minutes)

LaBr₃:Ce (2" x 2") detectors were used to measure soil samples placed in Marinelli beakers in singles and coincidence modes. Time-stamped data were acquired and background removed offline by using photon time-of-flight in addition to measurement of the two photon energies in coincidence. Coincident gamma-ray pairs from ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸Tl) series were identified in measured samples. The activity concentrations of ²³⁸U and ²³²Th series radionuclides inside the samples were determined in both singles and coincidence modes. The internal activity of the LaBr₃:Ce detector increases the MDA at 1460.8 keV and 2614.5 keV, which limits the measurement of ⁴⁰K radionuclide with low activity concentration in singles mode. The measured internal activity of ¹³⁸La in the LaBr₃:Ce detector crystal is 263.8 \pm 26.8 Bq kg⁻¹ which is comparable to the calculated activity of 293.3 Bq kg⁻¹. The suitability of the use of these detectors for NORM measurements was evaluated.

Primary authors: BASHIR, Munirat (Ibrahim Badamasi Babangida University); Prof. NEWMAN, R.T (Srellenvosch University); Dr JONES, P.

Presenter: BASHIR, Munirat (Ibrahim Badamasi Babangida University)

Session Classification: Session 7

Track Classification: Applied Nuclear Physics