

Motivation The rare-earth region has been a main point of interest due to the strong degrees of deformation that are present.

Why Gd? The Gd isotopes exhibit a sudden change in collectivity between 152<A<155, but still lack necessary spectroscopic information like crosssections or branching ratios of deformed states. Solution In this work, the ¹⁵²⁻¹⁵⁴Gd were studied by a fusion-evaporation reaction in the energy range of

61-67 MeV.

Experimental Setup

The Gd isotopes were populated at the 9 MV Tandem at IFIN-HH in Romania, employing the ROSPHERE array mounted with 15 HPGe.

Fig. 1: The ROSPHERE array.

Spectroscopic studies in ¹⁵²⁻¹⁵⁴Gd S. Pelonis¹, T. J. Mertzimekis¹, A. Chalil¹, F. C. L. Crespi², A. Bracco², G. Zagoraios¹, D. Papaioannou¹, N. Florea³, N. Marginean³, L. Stan³ and A. Turturica³

¹ Department of Physics, University of Athens, Zografou Campus, GR-15784, Greece ² Universita degli Studi di Milano and INFN sez. Milano, I-20122, Italy ³ National Institute for Physics and Nuclear Engineering, R-77125, Romania

Fig. 2: Projection of the γ-γ spectrum gated at 451.1 keV. The zoomed region depicts the partially overlapped peaks at 410 keV.

Fig. 3: Relative Cross-Sections for the studied Gd isotopes. Some errors are smaller than the accompanied symbols.

Transition	${ m E}_{\gamma}$ (keV)	Exp.	Lit.	Multipolarity		
$ \frac{\left(\frac{23^+}{2}\right) \rightarrow \left(\frac{19^+}{2}\right)}{\left(\frac{23^+}{2}\right) \rightarrow \left(\frac{21^+}{2}\right)} \rightarrow \left(\frac{21^+}{2}\right)} \rightarrow \left(\frac{25^+}{2}\right) $	460.0(2) 708.7(2)	0.59(22) 0.41(25)	0.53(4) 0.36(3)	E2 D, Q		
$\left(\frac{23}{2}\right) \rightarrow \left(\frac{25}{2}\right)$	241.7(5)	-	0.111(8)	(M1 + E2)		

Table 1. Dranching Dation for 153Cd

Transition	$\mathbf{E}_{\boldsymbol{\gamma}}$	Exp.	Lit.	Multipolarity
	(keV)			
$4^+_2 \rightarrow 4^+_1$	526.88(5)	0.47(5)	0.512(15)	E0 + M1 + E2
$4^+_2 \rightarrow 2^+_2$	351.69(4)	0.53(7)	0.452(14)	E2
$4^+_2 \rightarrow 2^+_3$	172.1(4)	-	0.017(8)	[E2]
$4^+_2 \rightarrow 3^1$	159.16(16)	-	0.0184(21)	[E1]
$2^+_2 \rightarrow 2^+_1$	586.2648(26)	0.70(9)	0.800(9)	E0 + M1 + E2
$2^{\mp}_2 \rightarrow 0^{\mp}_{gs}$	930.50(4)	0.15(4)	0.128(3)	(E2)
$2^+_2 \rightarrow 0^+_2$	315.11(3)	0.15(5)	0.0703(15)	E2
$2^+_2 \rightarrow 4^+_1$	175.09(3)	3 1 1	0.0022(5)	[E2]
$11^1 \rightarrow 10^+_1$	514.3	0.65(10)	0.65	D
$11^1 \rightarrow 9^1$	483.1	0.35(7)	0.35	E2
$10^{-}_{1} \rightarrow 10^{+}_{1}$	589.9	0.65(19)	0.62	-
$10^1 \rightarrow 8^1$	353.6	0.35(15)	0.38	-
$10^1 \rightarrow 9^1$	558.0	-	-	-
$9^1 \rightarrow 7^1$	451.1	0.86(14)	0.78	E2
$9^1 \rightarrow 8^+_1$	584.6	0.14(4)	0.22	D
$6^+_2 \rightarrow 4^+_2$	385.9(1)	0.50(7)	0.83(5)	E2
$6^+_2 \rightarrow 6^+_1$	440.8(2)	0.22(6)	0.10(4)	(M1 + E2)
$6^+_2 ightarrow 5^1$	197.4(3)	0.28(8)	0.07(1)	[E1]
$7^1 \rightarrow 5^1$	410.0	0.44(12)	<u></u>	-
$7^1 \rightarrow 6^+_1$	652.9(3)	0.56(15)	_	E1

Conclusions

- previous data has been established
- experimental values below the Coulomb barrier
- The present work reports on the first values for relative cross-sections in ¹⁵²⁻¹⁵⁴Gd
- New results have been established for the branching ratios in ¹⁵²Gd

- [1] A. Khaliel et al., EPL **128** 62001
- [2] S. Pelonis et al., (in prep)
- [3] S. R. Lesher et al., Phys. Rev. C 66 051305
- [4] S. Leoni et al., Phys. Rev. Lett. **118** 162502

We acknowledge travel support by ENSAR2.

• A good agreement between present results and • The PACE4 results significantly deviate from the

References

