

[A] Argonne National Laboratory, United States, [B] iThemba Labs, South Africa, [C] Keele University, United States, [F] North Carolina State University, United States, [B] iThemba Labs, South Africa, [C] Keele University, United States, [G] Triangle University, United States, [F] North Carolina State University, United States, [G] Triangle University of Tokyo, Japan, [J] University, United States, [A] Triangle Univers Witwatersrand, South Africa & [K] University of York, United Kingdom

Experimental Aims

To determine the spin-parity and neutron widths of ²¹Ne states that fall between 7.0 - 8.2 MeV using the reaction: ²⁰Ne(d,p)²¹Ne studied in both inverse and direct kinematics over the course of two experiments and to use the results to constrain the predictions for the ratio of the rates of reaction: $(\alpha, n)/(\alpha, \gamma)$ on ¹⁷O at astrophysical energies of $0.2 \leq T_9[GK] \geq 0.3$

Enge Split-Pole Spectrograph (Triangle **Universities Nuclear Laboratory, USA)**

- Type: direct kinematics [3]
- Beam: ²H at 14MeV
- Target: carbon foil implanted with ²⁰Ne
- Pros: good resolution
- Cons: contaminants pose a problem
- Results: this experiment did constrain the predicted rates of reaction however ¹⁷O contamination obscured several important energy levels and so lead to the experiment being repeated in inverse kinematics

The Energy Levels of ²¹Ne and the s-process in Rapidly-Rotating Metal Poor Stars

Astrophysical Motivation

Observations of old Ultra Metal Poor stars have shown that current models of early nucleosynthesis underproduce elements in the range of 26 < Z < 47 [4], suggesting that there is more than just the rprocess operating at early times. One source of these elements could be the s-process in Rapidly-Rotating Metal Poor Stars.

 $^{16}O(n,\gamma)$ ^{17}O competes strongly for neutrons with the s-process. Those neutrons could be recycled by the reaction ${}^{17}O(\alpha,n){}^{20}Ne$ however ¹⁷O+ α branches with ¹⁷O(α,γ)²¹Ne. The ratio of these reactions will determine the efficiency of the s-process in rapidly-rotating metal poor stars but, that ratio is highly uncertain and $^{17}O+\alpha$ cannot be directly measured due to low crosssections [5] at the relevant energies. Calculated predictions for the ratio are used instead but these depend upon the energy levels of ²¹Ne – some of which have unknown parameters (right).

Adsley, P.^{[B[J]}, Angus, C. ^{[H][K]}, Avila, M. ^[A], Barton, C.^[K], Chakraborty, S. ^[K], Choplin, A. ^[D], Diget, C. Aa. ^[K], Frost-Schenk, J. ^[K], Hirschi, R. ^{[C][I]}, Hoffman, C. ^[A], Jayatiss, H. ^[A], Kay, B. ^[A], Laird, A. ^[K], Longland, R. ^{[F][G]}, Marshall, C. ^{[F][G]}, Muller-Gatermann, C. ^[A], Portillo-Chaves, F. ^{[F][G]}, Rojo, J. ^[K], Seetoodehnia, K. ^{[F][G]}, Tang, T. L. ^[A]. Tolstukhin. I. ^[A] & Wilson. G. ^{[A][E]}

- Type: inverse kinematics
- Beam: ²⁰Ne at 220MeV
- Target: Deuterated polyethylene
- Pros: contaminants do not impact results
- Cons: resolution is much lower • Status: analysis is proceeding using the direct

References

97-106.

Helical Orbital Spectrometer (Argonne National Laboratory, USA)

- kinematics results to inform the fitting of the
- energy levels in the ²¹Ne spectrum (top-
- centre) once complete, the results will be
- used to constrain the ratio of reaction rates

- [1] Marshall, C. et al. (2019) "The Focal-Plane Detector Package on the TUNL Split-Pole *Spectrograph*". IEEE T INSTRUM MEAS 68, 533-546. [2] Lighthall, J. C. et al. (2010) "Commissioning of the HELIOS spectrometer". NIM 622(1),
- [3] Frost-Schenk, J. (2020) "Alpha capture reactions for abundance observations in nuclear astrophysics". PhD thesis, University of York.
- [4] Travaglio, C. et al. (2004) "Galactic evolution of Sr, Y and Zr: a multiplicity of nucleosynthetic processes". ApJ 601, 864-884.
- [5] Pignatari, M. et al. (2008) "The s-process in massive stars at low metallicity: the effect of primary 14N from fast rotating stars". ApJ 687, 95-98. [6] Taggart, M. P. et al. (2019) "A direct measurement of the $17O(\alpha, \gamma)21Ne$ reaction in
- inverse kinematics and its impact on heavy element production". PLB 798, 134894.