DICER: A new <u>Device for Indirect Capture Experiments on Radionuclides</u>

- A. Stamatopoulos¹, P. Koehler¹, E. Bond², T. Bredeweg², A. Couture¹, M. Fassbender², A. Hayes-Sterbenz³, G. Keksis², A. Matyskin², K. Parsons⁴, G. Rusev², J. Ullmann¹, C. Vermeulen²
- 1. Physics Division, Los Alamos National Laboratory, 87545, NM, USA
- 2. Chemistry Division, Los Alamos National Laboratory, 87545, NM, USA
- 3. Theoretical Division, Los Alamos National Laboratory, 87545, NM, USA
- 4. X-Computational Physics Division, Los Alamos National Laboratory, 87545, NM, USA

Introduction

- (n,y) cross sections on radionuclides are of high importance
- Radiochemical diagnostics/technical nuclear forensics
- Nuclear physics and astrophysics
- Nuclear criticality safety and advanced reactors
- Isotope production
- Challenging direct measurements: big backgrounds involved.
- Indirect techniques provide answers but heavily rely on theory, hence the **results** are **quite uncertain**
- A new technique is proposed, based on 3 steps:
 - Neutron **transmission** experiments
 - **R-Matrix** analysis of the resonances seen in the transmission spectrum
 - Resonance properties to calibrate Nuclear Statistical Models.

Technical details

Neutron source and spectrum

Detectors

- A commercial ²³⁵U loaded fission chamber is installed at ~7.8 m to monitor the neutron flux.
- Two types of ⁶Li-glass neutron detectors are available at the 31.5 and 64m detector stations:
 - ORELA type: Dual PMT detector. Less material in beam: less background Poorer light collection • Chi-nu type: Single PMT detector. PMT in contact with the ⁶Li-glass More material in beam: more background

Traditional vs DICER

Traditional transmission measurements

- **Neutrons** are **spallation** products
- **800MeV protons from** LANL's LANSCE impinge on a split W target at a 20 Hz duty cycle.
- DICER points to the liquid hydrogen moderator
- Neutron spectrum spans ~0.2 meV 100 keV
- The neutron spectrum can be filtered using a set of paddles

First results

- Sample cycling is needed.
- Sample **positioning** has **finite accuracy**.
- Precise **repeatability** of the sample's **position**, relative to the collimation system, is **not ensured**.
- Treatment: **samples** are much **larger** than the neutron **beam**, defined by the collimation system.
- Large samples are sometimes difficult to fabricate when there are dose rates and rarity of the material considerations.

DICER: Binocular approach

Collimation system

- The collimation system consists of **3 components**
 - Rotating beam blocker: Allows the passage/blocking of **neutrons** on each mini beam line (14.35 m)
 - **Binocular collimator**: Collimates the beam down to **1 mm** diameter and serves as a **sample holder** (14.85 m)
 - Aperture stop collimator: Provides the last collimation stage, **shaping** the beam at the proper diameter to intercept with the detectors (18.5 m).

- **Binocular mode** of operation
- Simultaneous measurement of sample in/out
- No precise repositioning concerns
- Added **bonus**: measurements will be completed **50% faster**!

Perspectives

First radionuclide measurement (⁸⁸Zr): to be completed soon Data already taken on several stable nuclei: ^{191,193}Ir, ^{147,149}Sm **Upgrade** of the **spallation** target during the LANSCE **2022** cycle break.

- Upgrade of the **sample collimator**: **0.1mm** diameter
- Upgrade of the detection system: a **pixelized detector array** (LAPPD) will replace the current dual/single PMT detector.

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA. LA-UR-21-28849

Thanos Stamatopoulos

athanasios.stamatopoulos@lanl.gov

Experiendo cognoscitur