First observation of low-lying strongly-coupled prolate band in neutron-deficient semi-magic ¹⁸⁷Pb

W. Q. Zhang^{1,2}, A. N. Andreyev^{3,4}, Z. Liu^{1,2}, D. Seweryniak⁵, D.T. Doherty⁶, Z. H. Li⁷ ¹Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China ²University of Chinese academy of Sciences, Beijing, China ³Department of Physics, University of York, YO10 5DD, United Kingdom ⁴Advanced Science Research Center(ASRC), Japan Atomic Energy Agency, Tokai-mura, Japan ⁵*Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA* ⁶Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom ⁷State key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China

A prompt and delayed γ -ray spectroscopy of neutron-deficient isotope ¹⁸⁷Pb has been performed using the recoil-decay tagging and the isomer-decay tagging techniques at Argonne Gas-Filled Analyzer (AGFA). A new 4.66(4) us isomer and a prolate strongly-coupled band on it were identified. Combining this result with previous studies, evidence for triple shape coexistence at low energy has been found in negative parity configurations in ¹⁸⁷Pb.

1. Introduction

Band 1(a)		
(27/2)	Band 1(b)	(27

Band1(a): 244 + 329 + 406 gates

The coexistence of different shapes at low excitation energy within the same nucleus is a well-established phenomenon in the vicinity of the closed shells, exhibiting the complexity of nucleus as a quantum many-fermion system. Some of the best examples of shape coexistence are observed in neutron-deficient Pb isotopes in the vicinity of the N = 104 neutron midshell, in which the coexistence at low energy of spherical, oblate and prolate configurations was reported.

ew of the triplet shape coexistence in ¹⁸⁶Pk A. N. Andreyev, et al., Nature 405, 430 (2000)

In this Poster, we present the observation of a new microsecond isomeric state with $I^{\pi} = (7/2)$ in ¹⁸⁷Pb and a prolate rotational band built on this new isomer, leading to a pronounced shape coexistence in ¹⁸⁷Pb.

2. Experiment

The experiment was carried out at Argonne Gas-Filled Analyzer (AGFA), at ANL. The ¹⁸⁷Pb nuclei were produced in the ¹⁴²Nd(⁵⁰Cr, 2p3n) reaction. The recoil-decay tagging (RDT) and the isomer-decay tagging (IDT) techniques were used to provide unambiguous γ -rays assignment to ¹⁸⁷Pb.

Schematic view of the AGFA and the detector system.

4. Discussion

To compare the rotational properties of the (7/2) bands in ¹⁸⁷Pb and ^{183,185}Hg, the experimental aligned angular momenta *i* and Routhians *e*' are plotted in Fig. 6. The angular momentum alignment is very similar and gradual at lower rotational frequencies for these 3 cases. The experimental Routhians of these bands are also consistent with each other, further confirming that the three bands are almost identical and the prolate deformation of the (7/2) bands in ¹⁸⁷Pb.

3. Results

The a decay scheme of ^{187m,g}Pb is shown in Fig. 1. The spectrum of delayed γ -rays of ¹⁸⁷Pb at the focal plane was shown in Fig. 2. A 308keV γ -ray was identified as a isomeric decay from a new isomeric state in ¹⁸⁷Pb. The half-life of the isomer is extracted to be 4.66(4) µs. Fig. 3(a) and (b) show the prompt γ spectra obtained by tagging on the delayed 308-keV γ line (IDT method, 6220- and 6260-keV (^{187g}Pb) decay line (RDT method), respectively.

Fig. 1: The a decay scheme of ^{187m,g}Pb.

(a) IDT: ΔT(EVRs - 308 keV) < 20 μs

Fig. 6: The aligned angular momenta *i* (top row) and experimental Routhians (bottom row) of the Band 1 in ¹⁸⁷Pb in comparison to the 7/2⁻[514] bands in ^{183,185}Hg.

To understand better the low-lying states in ¹⁸⁷Pb, the PES calculations for ¹⁸³⁻¹⁹³Pb were performed. Fig. 7 (a) shows the calculated PES for negative parity states in ¹⁸⁷Pb, where three coexisting minima - spherical, oblate and prolate can be clearly seen. Fig. 7 (b) compares the calculated and experimental excitation energies, where known, for the lowest negative-parity bandhead states in ¹⁸³⁻¹⁹¹Pb.

Fig. 2: The delayed γ-ray spectrum of ¹⁸⁷Pb. The inset (a) shows a part of the α -decay spectrum. The inset (b) shows the time distribution and associated single exponential fit for the 308-keV decay.

Energy (keV Fig. 3: The prompt y-ray spectra of ¹⁸⁷Pb in GS obtained

by tagging on the delayed 308-keV γ line (a) and 6260keV decay line (b). The contaminations in panel (b) are labeled.

A proposed level scheme of 187g Pb is shown in Fig. 4, representative $\gamma\gamma$ coincidence spectra are given in Fig. 5. A rotational band with two signature branches built on the 4.66 µs isomer was established. Fig. 4 also shows a known strongly-coupled prolate 7/2⁻[514] band in the isotone ¹⁸⁵Hg. A clear similarity between the new Band 1 in ¹⁸⁷Pb and the band in ¹⁸⁵Hg can be noted, with nearly identical transitions in both bands.

excitation energies of shape minima in the light odd-mass lead isotopes (b).

5. Conlusion

In summary, we have established a prolate rotational band on top of the new (7/2) isomer with a half-life of 4.66(4) µs in ¹⁸⁷Pb using the IDT and RDT methods. This band is nearly identical to the prolate strongly coupled 7/2-[514] band in ¹⁸⁵Hg. Together with an earlier identification of presumably oblate $(3/2^{-})$ excited state at 375 keV, the phenomenon of triple shape coexistence in now established for the negative parity states in ¹⁸⁷Pb, as it was earlier proposed for the positive parity states.