Studying the microscopic structure of the low-energy electric dipole response in ¹²⁰Sn

<u>Michael Weinert¹</u>, Mark Spieker², Gregory Potel³, Nadia Tsoneva⁴, Miriam Müscher¹, and Andreas Zilges¹

University of Cologne Institute for Nuclear Physics

Prerequisites

The accumulation of low-energy electric dipole strength below S_n , often called Pygmy Dipole Resonance (PDR), is a common feature of medium to heavy mass nuclei. The generating nuclear and experiments (<----). One of the missing pieces is the single-particle nature of the excited 1⁻ states, which has been studied using the $(d,p\gamma)$ reaction and a novel theoretical approach that combines detailed nuclear structure input and reaction theory.

heory

Nuclear structure information from energy-density functional (EDF) plus quasiparticle-phonon **model** (QPM) theory were combined with reaction theory (QPM+Reaction) to consistently predict (d,p) cross sections, γ decay branching, $(d,p\gamma)$ yields, energy-integrated and (γ,γ') cross sections for excited $J^{\pi} = 1^{-1}$ states in ¹²⁰Sn.

The distribution of one-phonon contributions (R²) to each final state is concentrated between 6 and 7 MeV for the two configurations relevant for the excitation of 1^- states in ¹¹⁹Sn(d,p). Two- and threephonon contributions (P² and T^2) are not shown.

 $C_{rel}^{1ph} = \sum R^2 / \sum (R^2 + P^2 + T^2)$ $C_{rel}^{2ph+3ph} = \sum (P^2 + T^2) / \sum (R^2 + P^2 + T^2)$

Experiment

A ¹¹⁹Sn(d,p γ)¹²⁰Sn experiment at an energy of $E_d = 8.5$ MeV was performed at the 10 MV FN-Tandem accelerator laboratory at the University of Cologne. The combined particle and γ -ray spectrometer **SONIC@HORUS** allowed identification the detailed and investigation of excited $J^{\pi} = 1^{-}$ states in the PDR region of ¹²⁰Sn.

Excitation matrix

selection of ground-state γ -decays The enhances the sensitivity to 1⁻ states and yields a γ -ray spectrum free from any contamination. The Doppler-corrected γ -ray spectrum shows a strong response in the PDR region of ¹²⁰Sn. Of the **80 discretely observed lines**, 64 were also observed in a (γ, γ') experiment on ¹²⁰Sn [2]. Proton- γ angular distributions allow to identify dominant J=1 character between 5 and 7.5 MeV, while an M1 contribution in the energy range can be neglected [4]. In conclusion, all observed γ decays stem from $J^{\pi} = 1^{-1}$ states in ¹²⁰Sn.

The QPM gives access to intricate details of each state's function. **Dominant** wave one-phonon character is predicted below 7 MeV, while higher lying states show complexity and increased decreased γ -decay branching to the ground state. Possible cause for the discrepancy between (γ, γ') and (p, p')!

Sensitivity Limit ¹¹⁹Sn(d,py) Yield [a.u.] 0.5 I_{S} [kev fm²] 10 120 Sn(γ,γ') Sensitivity Limit QPM + Reaction a.u.] Yield [0.5

 $\sum I_S^{NRF} = 337(21) \,\mathrm{keV} \,\mathrm{fm}^2$ $\sum I_{S}^{QPM} = 243 - 360 \,\mathrm{keV \, fm^2}$ (d,pγ) > 1 % – 0.5 %

The $(d,p\gamma)$ yields and energy-integrated (γ,γ') cross sections predicted by the QPM+Reaction approach

The EDF+QPM approach correctly predicts relevant singleparticle energies not just for the doubly-magic ²⁰⁸Pb [6], but also for the tin isotopes. Especially the prediction of the

here observed $3p_{1/2}$ and $3p_{3/2}$ strength in neutron-rich tin isotopes has been demanded recently in the literature [7].

Careful analysis of the QPM wave functions allows to investigate nuclear structure in the PDR region. The QPM

show excellent agreement with experimental data. The $(d,p\gamma)$ strength is fragmented to the lower-energy part of the PDR region, reproducing the $(d,p\gamma)$ centroid energy of 6.49 MeV. Summed (γ, γ') cross sections for states excited with both probes also show excellent agreement, taking into account the $(d,p\gamma)$ experimental sensitivity limit of approx. 1%.

If the observed **splitting** can be found in additional and even more neutron rich isotopes, this might have a significant impact on the **/ process** ?

mweinert@ikp.uni-koeln.de

¹University of Cologne, Institute for Nuclear Physics, Germany ²Department of Physics, Florida State University, Tallahassee, FL 32306, USA Lawrence Livermore National Laboratory, Livermore, California 94550, USA ¹Extreme Light Infrastructure (ELI-NP), Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH)

[1] A.M. Krumbholz et al., Phys. Lett. B 744, 7 (2015) [2] M. Müscher *et al.,* Phys. Rev. C **102**, 014317 (2020) [3] J. Endres, E. Litvinova *et al.*, Phys. Rev. Lett. **105**, 212503 (2010) [4] S. Bassauer *et al.*, Phys. Rev. C **102**, 034327 (2020) [5] S. G. Pickstone *et al.,* Nucl. Instrum. Methods A **875**, 104 (2017) [6] M. Spieker *et al.*, Phys. Rev. Lett. **125**, 102503 (2020) [7] B. Manning *et al.*, Phys. Rev. C **99**, 041302(R) (2019)

Supported by the DFG (ZI 510/10-1) and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. M. S. acknowledges support by the National Science Foundation under grant No. PHY-2012522. N. T. was supported by Extreme Light Infrastructure Nuclear Physics (ELI-NP) Phase II (Grant No. 1/07.07.2016, COP, ID 1334).