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Physics case

Partial level scheme of 212Po.
Lifetimes are taken from Ref. [1]

212Po lies two protons and neutrons outs ide
the doubly-magic nucleus 208Pb.

The energy of the low-lying exited states
can be well described by the shell-model ap-
proach, but experimental properties , such as
the large α-decay width of the ground state,
cannot described by this approach.

This has motivated the description of this nu-
cleus by a strongly mixing shell-model and
α-cluster conf gurations [2].

B(E2) values for the decays of the low-lying
yrast states cannot be described by any of the
models .

The B(E2; 4+1 → 2+1 ) and therefore the lifetime
of the 4+1 state are miss ing.

Separation of 212Po

Contaminations of other reaction channels , such as fus ion-evaporation (214,215Fr) or
one proton transfer (209Bi), are too strong for a clean fast-timing analys is .

A clean measurement of the 4+1 state lifetime is poss ible by taking advantage of the
isomeric 8+ state and the time difference between the Silicon and LaBr3(Ce) events .

Structure discussion of 212Po
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Reduced trans ition probabilities for the low-
lying yrast states .

The newly derived lifetime of the 4+1
state completes the knowledge of the
experimental B(E2; L → L − 2) values
of the low-lying yrast states .

Shell model approaches (SM1[3], SM2
[4]) cannot describe the whole syste-
matics of the B(E2) values .

The trend of experimental B(E2) va-
lues are better described in the
framework of an
α-clustering model (Clu this work,
Clu1 [2], Clu2 [5]) → α-cluster com-
ponents play an important role in the
structures of these states .

Experimental setup

Half of the ROSPHERE array.

α-transfer reaction: A beam of 10B at ener-
gy of 51 MeV was impinged on a 208Pb target
(9.65 mg/cm2). The γ -rays were detected by RO-
SPHERE in coincidence with the 6Li ejectile, detec-
ted in SORCERER.

ROSPHEREγ -ray detector array [6]: Cons ists of 15
high-purity Germanium detectors (HPGe) and 10
LaBr3(Ce) fast-timing scintillator detectors .

SORCERER particle detector array [7]: 6 Sili-
con photodiodes cover an angular range from
121.7 degree to 163.5 degree with respect to the
beam direction.

Trigger conditions: Two HPGe events or one Si-
LaBr3(Ce) event

Lifetime analysis
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20(b) Feeder gate on 223 keV
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(c) 223 keV - 405 keV coincidence

.

The lifetime of the f rst 4+ state is as-
sumed to lie in the 100 ps-region →
Well suited for a centroid shift lifetime
measurement.

LaBr3(Ce) detectors are essential due
to their good time resolution.

The Centroid Shift method [8,9] is
based on the difference between
the measured centroid of the time-
difference distribution to the prompt
centroidposition, calibrated applying
an 152E u source:

τ = C (E f , E d) − C P (E f , E d)

From our data set the lifetime of
all low-lying yrast states in 212Po
can be determined applying the Cen-
troid shift method and Slope me-

thod:

State This work Literature [1]

2+1 16(13) ps 20.5(26) ps
4+1 100(14) ps -
6+1 1.66(28) ns 1.1(3) ns
8+1 20.8(17) ns 21.1(4) ns

Outlook

To fully prove the impact of the
α-cluster components more ex-
perimental information on the
α-branchings and the static electro-
magnetic moments of the yrast sta-
tes in 212Po is needed.
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experimental B(E2; L → L − 2) values
of the low-lying yrast states .

Shell model approaches (SM1[3], SM2
[4]) cannot describe the whole syste-
matics of the B(E2) values .
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framework of an
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Clu1 [2], Clu2 [5]) → α-cluster com-
ponents play an important role in the
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Experimental setup

Half of the ROSPHERE array.

α-transfer reaction: A beam of 10B at ener-
gy of 51 MeV was impinged on a 208Pb target
(9.65 mg/cm2). The γ -rays were detected by RO-
SPHERE in coincidence with the 6Li ejectile, detec-
ted in SORCERER.

ROSPHEREγ -ray detector array [6]: Cons ists of 15
high-purity Germanium detectors (HPGe) and 10
LaBr3(Ce) fast-timing scintillator detectors .

SORCERER particle detector array [7]: 6 Sili-
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beam direction.

Trigger conditions: Two HPGe events or one Si-
LaBr3(Ce) event

Lifetime analysis
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