New evidence for alpha clustering structure in the ground state band of ²¹²Po

<u>8</u> 8+

<u>6</u> 6⁺

 $2 2^+$

(GS

 212 Po

Partial level scheme of ²¹²Po.

Lifetimes are taken from Ref. [1]

 $4 4^+ \frac{223}{1132}$

TECHNISCHE UNIVERSITÄT DARMSTADT

African Nuclear Physics Conference 2021

Ma. von Tresckow¹, M. Rudigier¹, T.M. Shneidman², T. Kröll¹, N. Marginean³, G. Rainovski⁴, M. Scheck⁵ et al.

1. TU Darmstadt, Germany 2. JINR Dubna, Russia 3. IFIN Bucharest, Romania 4. St. Kliment Ohridski University Sof a, Bulgaria 5. UWS Paisley, UK

<u>1476</u> $T_{1/2} = 14.6$ (3) ns

 $1355 \quad T_{1/2} = 0.76 \; (21) \; {
m ns}$

727 $T_{1/2} = 14.2 (18) \text{ ps}$

<u>0</u> $T_{1/2} = 294.3$ (8) ns

Physics case

Experimental setup

²¹²Po lies two protons and neutrons outside the doubly-magic nucleus ²⁰⁸Pb.

The energy of the low-lying exited states can be well described by the shell-model approach, but experimental properties, such as the large α -decay width of the ground state, cannot described by this approach.

This has motivated the description of this nucleus by a strongly mixing shell-model and α -cluster conf gurations [2].

B(E2) values for the decays of the low-lying yrast states cannot be described by any of the models.

The B(E2; $4_1^+ \rightarrow 2_1^+$) and therefore the lifetime of the 4_1^+ state are missing.

Separation of ²¹²Po

Contaminations of other reaction channels, such as fusion-evaporation (^{214,215}Fr) or one proton transfer (²⁰⁹Bi), are too strong for a clean fast-timing analysis.

A clean measurement of the 4^+_1 state lifetime is possible by taking advantage of the isomeric 8^+ state and the time difference between the Silicon and LaBr₃(Ce) events.

 α -transfer reaction: A beam of ¹⁰B at energy of 51 MeV was impinged on a ²⁰⁸Pb target (9.65 mg/cm^2) . The γ -rays were detected by RO-SPHERE in coincidence with the ⁶Li ejectile, detected in SORCERER.

ROSPHERE γ -ray detector array [6]: Consists of 15 high-purity Germanium detectors (HPGe) and 10 $LaBr_3(Ce)$ fast-timing scintillator detectors.

SORCERER particle detector array [7]: 6 Silicon photodiodes cover an angular range from 121.7 degree to 163.5 degree with respect to the beam direction.

Trigger conditions: Two HPGe events or one Si- $LaBr_3(Ce)$ event

Half of the ROSPHERE array.

Lifetime analysis

The lifetime of the f rst 4⁺ state is assumed to lie in the 100 ps-region \rightarrow Well suited for a *centroid shift lifetime* measurement.

200 (a) Decay gate on 405 keV	measured centroids
175	
1,3	-20 🕡

Structure discussion of ²¹²**Po**

The newly derived lifetime of the 4_1^+ state completes the knowledge of the experimental B(E2; L \rightarrow L – 2) values of the low-lying yrast states.

Shell model approaches (SM1[3], SM2

 $LaBr_3(Ce)$ detectors are essential due to their good time resolution.

The **Centroid Shift method** [8,9] is based on the difference between the measured centroid of the timedifference distribution to the **prompt centroid position**, calibrated applying an ¹⁵²E u source:

$\tau = C(E_f, E_d) - C^P(E_f, E_d)$

From our data set the lifetime of all low-lying yrast states in 212Po can be determined applying the *Cen*troid shift method and Slope method:

[4]) cannot describe the whole systematics of the B(E2) values.

The trend of experimental B(E2) values are better described in the framework of an α -clustering model (Clu this work, Clu1 [2], Clu2 [5]) $\rightarrow \alpha$ -cluster components play an important role in the structures of these states.

Outlook

To fully prove the impact of the α-cluster components more experimental information on the α -branchings and the static electromagnetic moments of the yrast states in ²¹²Po is needed.

References

[1] K. Auranen et al., Nuclear Data Sheets 168 (2020) [2] F. Hoyer et al., Phys. Rev. C 50, 2631 (1994) [3] H. Naïdja, Phys. Rev. C 103, 054303 (2021) [4] D. Kocheva et al., Phys. Rev. C 96, 044305 (2017) [5] D. S. Delion et al., Phys. Rev. C 85, 064306 (2012) [6] D. Bucurescu et al., Nucl. Instr. Meth. A 837, 1-10 (2016) [7] T. Beck et al., Nucl. Instr. Meth. A 951, 163090 (2020) [8] H. Mach et al., Nucl. Instr. Meth. A 280, 49-72 (1989) [9] J.-M. Régis et al., Nucl. Instr. Meth. A 622, 83-92 (2010)