

Reaction processes at near barrier energies: the case of ⁹Be+¹⁹⁷Au

<u>MALIKA KAUSHIK¹, G. Gupta², S.K. Pandit³, V.V. Parkar^{3,4}, Swati Thakur¹, Pushpendra P. Singh¹, V. Nanal^{2,*}, A. Shrivastava^{3,4}, R. G. Pillay¹, H. Krishnamoorthy^{4,5}, K. Mahata^{3,4}, S. Pal⁶, C.S. Palshetkar², K. Ramachandran³</u>

¹Department of Physics, Indian Institute of Technology Ropar, Punjab-140 001, India; ²DNAP, Tata Institute of Fundamental Research, Mumbai - 400005, India; ³NPD, Bhabha Atomic Research Centre, Mumbai - 400085, India; ⁴Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India; ⁵INO, Tata Institute of Fundamental Research, Mumbai - 400005, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF, Tata Institute of Fundamental Research, Mumbai - 400085, India; ⁶PLF,

Motivation Experimental Details Distinctive features of weakly bound • Projectile-Target Combination: ⁹Be+¹⁹⁷Au **stable nuclei (**^{6,7}Li, ⁹Be) [1,2] • BARC-TIFR Pelletron Linac Facility (PLF), at • Low breakup threshold TIFR, Mumbai. Small binding energy Stack-foil technique. Counts/keV Cluster structure • E = 30 - 47MeV. Mimic radioactive ion beams ¹⁹⁸Au (-1n) • V_B = 38.4 MeV. E_{lob} = 46.7 Me ⁶Au (+1n) Borromean weakly bound stable nucleus • Beam Current (⁹Be) ~ 8 - 15 pnA. [3] ⁰TI (ICF) $Be \rightarrow \alpha + \alpha + n$ ²⁰³Bi (CF) *

Study of complete fusion (CF), incomplete fusion (ICF), and *n*-transfer processes in ⁹Be+¹⁹⁷Au system.

HPGe Detector set up for offline analysis and target mounting set up

Fig. 1. Offline gamma spectra in the ${}^{9}\text{Be} + {}^{197}\text{Au}$ system at $\text{E}_{\text{lab}} = 36.6$ and 46.7 MeV. The characteristic gamma-lines of complete fusion (CF), incomplete fusion (ICF), and transfer (tr) reaction products are marked.

Fig. 2. Comparison of measured transfer (tr), ICF, and CF cross sections as a function of $E_{c.m.}$ in the ⁹Be + ¹⁹⁷Au system. [4].

Fig. 3. CF excitation function (EF) of ⁹Be + ¹⁹⁷Au system is compared with calculations obtained using coupled-channels code CCFULL on linear and logarithmic scales [3].

Comparison of reduced fusion EFs: x + ¹⁹⁷Au systems 10¹ (a) **Reduced variables:** $E_{red} = \frac{E_{c.m.} - V_B}{V_B}$ $\hbar\omega$ 10⁻² рел 10⁻³ ⁹Be+¹⁹⁷Au (Present work) ⁷Li+¹⁹⁷Au $\sigma_{red} = \frac{2.E_{c.m.}}{\hbar\omega.R_B^2}\sigma_F$ 10-4 ¹¹B+¹⁹⁷Au ⁶Li+¹⁹⁷Au ⁹Be+¹⁹⁷Au (Present work) ⁸He+¹⁹⁷Au 10-5 ⁴He+¹⁹⁷Au ⁶He+¹⁹⁷Au 10^{-6} LIFE Universal fusion function (b) (d) 15 (UFF) ored $F_0(x) = ln \left[1 + exp(2\pi x) \right]$

Fig. 4 Comparison of reduced fusion excitation functions (EFs) of $x + {}^{197}Au$: (a) weakly bound projectiles ${}^{6}He, {}^{8}He, {}^{6,7}Li$, and (c) projectiles with higher break-up threshold ${}^{4}He, {}^{11}B$. Panels (b) and (d) show data of (a) and (c), respectively, on a linear scale for better visibility of the above-barrier region. Universal fusion function (UFF) is also plotted (black solid line) [3].

n-transfer in ⁹Be + ¹⁹⁷Au

Potential Parameters

^{6,7}Li + ¹⁹⁷Au systems

Results and conclusions

Potential	V _{AW}	V _{Global}
V ₀ (MeV)	51.94	257.7
r _o (fm)	1.17	1.36
a _o (fm)	0.63	0.73
W _v (MeV)		16.32
r _v (fm)		1.64
${\sf a}_{\sf V}$ (fm)		0.60

Fig. 5. Comparison of measured EFs with CRC calculations of transfer channels for (a)¹⁹⁸Au including the ground state and 2⁺ resonance (E = 3.03 MeV) state of ⁸Be, and only the ground state of ⁸Be, and (b)¹⁹⁶Au with ground state of ¹⁰Be using global optical potential (V_{Global}). The dash dotted lines represent the CRC calcuations with Akyuz-Winther (V_{AW}) potential in both of the transfer channels [4].

Fig. 6. Comparison of the measured EFs of CF and transfer reaction in (a) 6 Li + 197 Au, and (b) 7 Li + 197 Au systems [5], where V_B is the barrier.

- CF and transfer cross sections are measured ~ 18% and 24% down the barrier, respectively.
- > Suppression factor (>V_B) \approx 39±1%.
- The prominent role of ⁹Be ground state deformation in sub-barrier fusion.
- In-stripping CRC calculations in ⁹Be+¹⁹⁷Au system have highlighted the significant impact of the 2⁺ resonance state of ⁸Be.
- Ratio of transfer to CF cross sections is considerably higher in ⁹Be+¹⁹⁷Au in comparison to ^{6,7}Li+¹⁹⁷Au systems which can be attributed to the structural difference in these projectiles.

References: 1. V. Jha et al., Phys. Rep. 845, 1 (2020) and references therein. 2. L. F. Canto et al., Phys. Rep. 596, 1-86 (2015) and references therein. 3. Malika Kaushik et al., Phys. Rev. C 101, 034611 (2020). 4. Malika Kaushik et al., Phys. Rev. C 104, 024615 (2021). 5. C.S. Palshetkar et. al., Phys. Rev. C 89, 024607 (2014).

Pelletron LINAC facility and target lab staff, TIFR, Mumbai is greatly acknowledged.