Study of ⁴He + ⁴He inelastic scattering at the MAGNEX facility

V. Soukeras^{1,2,*}, F. Cappuzzello^{1,2}, M. Cavallaro¹, D. Carbone¹, A. Hacisalihoglu^{1,3}, M. Fisichella¹, C. Agodi¹, H.-W. Becker⁴, G. A. Brischetto^{1,2}, S. Calabrese^{1,2}, C. Ciampi⁵, M. Cicerchia⁶, M. Cinausero⁶, I. Ciraldo^{1,2}, M. D'Andrea⁷, D. Dell'Aquila⁸, S. Firat⁹, C. Frosin⁵, M. Hilcker⁴, L. La Fauci^{1,2}, I. Lombardo⁷, T. Marchi⁶, O. Sgouros¹, A. Spatafora^{1,2}, D. Torresi¹, M. Vigilante^{10,11}, A. Yildirim⁹

¹ INFN Laboratori Nazionali del Sud, Catania, Italy ² Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Catania, Italy ³ Institute of Natural Science, Karadeniz Teknik Universitesi, Trabzon, Turkey ⁴ Ruhr-Universitat Bochum, Bochum, Germany ⁵ INFN - Sezione di Firenze, Florence, Italy ⁶ INFN Laboratori Nazionali di Legnaro, Legnaro, Italy ⁷ INFN - Sezione di Catania, Catania, Italy ⁸ Rudjer Bošković Institute, Zagreb, Croatia ⁹ Akdeniz University, Antalya, Turkey ¹⁰ INFN - Sezione di Napoli, Napoli, Italy

¹¹ Università degli Studi di Napoli Federico II, Napoli, Italy

* e-mail: vasileios.soukeras@lns.infn.it

MOTIVATION - INTRODUCTION

⁴He nucleus

> Well bound

tuto Nazionale di Fisica Nuclear

- No bound states [1]
- Pronounced resonance very close to the breakup threshold with the same spin and parity (0⁺) as the ground state [1]

⁴He(e,e')⁴He^{*} [2]

existing studies

⁴He(⁴He,⁴He)⁴He^{*} [3]

- > A recent ab-initio calculation [4] of the monopole transition form factor of ⁴He with realistic nuclear forces pointed to a strong dependence on the different realistic potential used and revealed a significant disagreement with respect to all existing electron scattering data when a method based on modern Hamiltonians from chiral perturbation theory was adopted. \rightarrow further investigation is needed
- \succ The goals of the present study for the ⁴He + ⁴He reaction at 53 MeV incident energy (E_{cm} = 26.5 MeV) are:
 - \checkmark extract the characteristics of the 0⁺ resonance of ⁴He in a new measurement
 - ✓ resolve previous inconsistencies between (⁴He,⁴He) and (e,e') data
 - ✓ measure inelastic scattering cross section angular distributions.
 - ✓ a global interpretation of inelastic scattering together with the elastic scattering channel, measured under the same experimental conditions, in an optical model analysis, allowing the extraction of the form factors.

EXPERIMENTAL DETAILS

PARTICLE IDENTIFICATION

RUHR

Particle identification at MAGNEX is based on Z and m/q separation [8]

Particle identification at OSCAR is based on the standard $\Delta E - E$ technique

EXPERIMENTAL DATA vs MONTE CARLO SIMULATIONS

Experimental ϑ_{α} - E_x spectra (in coincidence with ³H or ³He respectively) were compared with kinematical simulations based on the multipurpose Monte Carlo simulation algorithm MULTIP [9]. The simulations were also useful in order to estimate the energy efficiency due to the coincidence measurements. This efficiency is mainly dominated by the detection threshold of OSCAR. The reactions considered at the simulations are:

⁴He – ³H coincidences

♦ $^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}^{*} \rightarrow {}^{4}\text{He} + {}^{3}\text{H} + {}^{1}\text{H}$ (resonant (0⁺) and non – resonant breakup) $4He + 4He \rightarrow 3H + 5Li \rightarrow 4He + 3H + 1H$

⁴He – ³He coincidences

- ♦ $^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}^{*} \rightarrow {}^{4}\text{He} + {}^{3}\text{He} + n$ (non – resonant breakup)
- ♦ 4 He + 4 He \rightarrow 3 He + 5 He \rightarrow 4 He + 3 He + n

Facility: MAGNEX, Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud (INFN-LNS).

Beam: ⁴He accelerated by the K800 Superconducting Cyclotron of at 53 MeV

Target: ⁴He target implanted on a thin aluminum foil

Background estimation: measurement with an aluminum target; the majority of the background events was excluded by performing a coincidence measurement

Elastic scattering measurement

- The ⁴He ejectiles were momentum analysed by the MAGNEX magnetic spectrometer [5].
- The MAGNEX optical axis was set at $\vartheta_{opt} = 6.6^{\circ}$ spanning an angular range between 2° and 13°.

A ϑ_{α} versus excitation energy (E_x) spectrum acquired in a ⁴He - ³H coincidence measurement is compared with MULTIP simulated data. Black \rightarrow experimental spectrum → **resonant** continuum Red → non-resonant continuum Green Blue \rightarrow transfer (⁴He+⁴He \rightarrow ³H+⁵Li \rightarrow ⁴He+³H+¹H)

A ϑ_{α} versus excitation energy (E_x) spectrum acquired in a ⁴He - ³He coincidence measurement is compared with MULTIP simulated data. Black \rightarrow experimental spectrum → **non-resonant** continuum Green Blue \rightarrow transfer (⁴He+⁴He \rightarrow ³He+⁵He \rightarrow ⁴He+³He+n)

SUMMARY AND PERSPECTIVES

 \checkmark The ⁴He + ⁴He \rightarrow ⁴He + ⁴He^{*} \rightarrow ⁴He + ³H + ¹H and ⁴He + ⁴He \rightarrow ⁴He + ⁴He^{*} \rightarrow ⁴He + ³He + n reactions (inelastic scattering) were measured at the MAGNEX facility of INFN – LNS together with the elastic scattering channel.

✓ The challenging inelastic scattering measurement was performed in a coincidence measurement by detecting the heavy ejectile ⁴He in MAGNEX while the lighter ³H and ³He were detected by the OSCAR telescope. The high Z and mass resolutions of both MAGNEX and OSCAR guaranteed an accurate particle identification.

✓ Comprehensive kinematical simulations based on the MULTIP algorithm make feasible to disentangle the inelastic scattering via the first excited state of ⁴He (0⁺), the non-resonant breakup processes and the transfer processes leading to the same final channels.

- The different ions were detected by the Focal Plane Detector (FPD) [6] of MAGNEX, which is consisted of a gas tracker followed by a wall of 60 silicon pad detectors.

Inelastic scattering measurement

No bound states are reporting in ⁴He structure therefore the ⁴He^{*} excited states can be reconstructed by the detection of its fragments. In particular, the two different decay modes $^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}^{*} \rightarrow {}^{4}\text{He} + {}^{3}\text{H} + {}^{1}\text{H} \text{ and}$

 $^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}^{*} \rightarrow {}^{4}\text{He} + {}^{3}\text{He} + n$

were reconstructed by two coincidence measurements. In both modes ⁴He nuclei were detected by the MAGNEX FPD, while the ³H and ³He fragments were detected by OSCAR (hOdoscope of Silicons for Correlations and Analysis of Reactions) telescope [7]. OSCAR consists of two detection stages: a Single Sided Silicon Strip Detector (SSSSD) 20 μ m thick as ΔE , followed by 16 silicon pads (4x4) 300 μm thick, providing the measurement of the residual energy *E*.

Presented in African Nuclear Physics Conference (ANPC) in September 2021

by Vasileios Soukeras, e-mail: vasileios.soukeras@lns.infn.it, Address: INFN Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy

✓ The data analysis is underway in a more quantitative basis aiming to extract differential and integrated cross sections.

 \checkmark A theoretical analysis is also in progress.

REFERENCES

[1] D.R. Tilley et al., Nucl. Phys. A 541, 1 (1992) and references therein [2] R. Frosch et al., Phys. Lett. 19, 155 (1965); R. F. Frosch et al., Nucl. Phys. A 110, 657 (1968); Th. Walcher, Phys. Lett. B31, 442 (1970); G. Kobshall et al., Nucl. Phys. A 405, 648 (1983) [3] E. E. Gross et al., Phys. Rev. 178, 1584 (1969); M. Baumgartner et al., Nucl. Phys. A 368, 189 (1981) [4] S. Bacca, N. Barnea, W. Leidemann, G. Orlandini, Phys. Rev. Lett. 110, 042503 (2013) [5] F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaro, Eur. Phys. J. A 52, 167 (2016) [6] D. Torresi, O. Sgouros, V. Soukeras et al., Nucl. Instrum. Meth. Phys. Res. A 989, 164918 (2021) [7] D. Dell'Aquila, I. Lombardo, G. Verde et al., Nucl. Instrum. Meth. Phys. Res. A 877, 227 (2018) [8] F. Cappuzzello, M. Cvallaro, A. Cunsolo et al., Nucl. Instrum. Meth. Phys. Res. A 621, 419 (2010) [9] O. Sgouros, V. Soukeras, A. Pakou, Eur. Phys. J. A 53, 165 (2017)