AFRICAN NUCLEAR PHYSICS CONFERENCE (ANPC2021)

Contribution ID: 170 Type: Poster

Fast timing characteristics of 1.5" x 1.5" CeBr₃ detector

Thursday, 23 September 2021 15:30 (2 hours)

Measurement of lifetime of nuclear excited states and extraction of electromagnetic transition strengths from that provides direct insight into nuclear structure. Gamma ray coincidence spectroscopy with new-age fast scintillator detectors, such as, LaBr₃(Ce) and CeBr₃ serves as a useful tool for lifetime measurements in subnanosecond ranges. Although the energy resolution of CeBr₃ is slightly poorer than that of LaBr₃(Ce), but with comparable time resolution and without any internal activity, CeBr₃ scintillator detectors emerge as a potential alternative to LaBr₃(Ce).

At Variable Energy Cyclotron Centre (VECC), Kolkata, 1.5" x 1.5" CeBr $_3$ detectors coupled with a new Photo-Multiplier tube Hamamatsu R13089-100 has been characterized. An energy resolution of 4.1% has been obtained at 662 keV of 137 Cs source. Absolute photo-peak efficiencies at different source-to-detector distances have been measured [1]. GEANT4 simulation has been carried out which reproduces pulse height spectra and absolute efficiencies reasonably well. The best time resolution (TAC FWHM) of 199(2) ps between two CeBr $_3$ detectors for 1173-1332 energy cascade of 60 Co source and 327(3) ps for 511-511 keV of 22 Na source have been obtained after optimizing various parameters. With the knowledge of basic characteristics of two detector set-up, time-walk response for this set-up was determined using Mirror Symmetric Centroid Difference (MSCD) method [2]. 152 Eu source has been used to calibrate Prompt Response Difference[PRD(E $_{\gamma}$)] curve for different high voltages at various CFD delays [3]. For each set-up, known lifetimes of two states of 133 Cs - (3/2) $^+$ state at 384 keV and (5/2) $^+$ state at 161 keV, populated via electron capture decay of 133 Ba, have been reproduced.

Nuclei near 208 Pb region are expected to have spherical structure at lower spin and collective structure at higher spin and excitation energies. For even-even Po (Z=84) isotopes in this region, the variation of $R_{4/2}$ ratio approaches towards vibrational limit as neutron holes increase whereas, E2 transition strength increase from 210 Po to 206 Po [4]. The low-lying states of neighboring odd-A nuclei in this region are mainly described by the coupling of one neutron hole with the nearest even-even core. The lifetime measurement of low-lying states of Po isotopes will be of great importance to understand the interplay between single particle and collective structure. Lifetime of $(11/2)^-$ state at 1521.85 keV of 209 Po has been determined. The excited states of 209 Po were populated via electron capture decay of 209 At which was produced using the reaction 209 Bi $(\alpha, 4n)$ 209 At at 52 MeV beam energy at VECC, kolkata. The value obtained has been found to be in good agreement with the previously reported value [5].

References:

- [1] S.Das, et al., Proc. of DAE-BRNS Symp. on Nucl. Phys.70 (2019) 986
- [2] J.-M.Regis, et al., NIM A 622 (2010) 83-92
- [3] J.-M.Regis, et al., NIM A 684 (2012) 36-45
- [4] M. Stoyanova, et al., PRC 100, 064304 (2019)
- [5] V. Karayonchev, et al., PRC 103, 044309 (2021)

Primary author: DAS, Sneha

Co-authors: BHATTACHARYA, Soumik; BHATTACHARYYA, S; BANIK, R; DAR, Shabir; PANDIT, Deepak; CHOUD-

HURI, A; BANERJEE, K; MONDAL, Debasish; MUKHOPADHYAY, S

Presenter: DAS, Sneha

Session Classification: Poster Session 2

Track Classification: Nuclear Structure, Reactions and Dynamics