Shapes, softness, and non-yrast collectivity in ¹⁸⁶W

V. S. Prasher,¹ A. J. Mitchell,^{1,2,*} C. J. Lister,¹ P. Chowdhury,¹ L. Afanasieva,³ M. Albers,⁴ C. J. Chiara,^{4,5,} M. P. Carpenter,⁴ D. Cline,⁶ N. D'Olympia,^{1,} C. J. Guess,^{1,} A. B. Hayes,⁷ C. R. Hoffman,⁴ R. V. F. Janssens,^{8,9} B. P. Kay,⁴ T. L. Khoo,⁴ A. Korichi,^{4,10} T. Lauritsen,⁴ E. Merchan,^{1,} Y. Qiu,^{1,} D. Seweryniak,⁴ R. Shearman,^{1,11,12} S. K. Tandel,^{1,} A. Verras,^{1,} C. Y. Wu,¹³ and S. Zhu^{4,7}

¹ Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA; ² Department of Physics, The Australian National University, Canberra, ACT 2601, Australia; ³ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA; ⁴ Physics Division, Argonne National Laboratory, USA; ⁵ Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; ⁶ Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627, USA; 7 National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973, USA; 8 Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3255, USA; 9 Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708-2308, USA; 10 IJCLab-IN2P3, F-91405 Orsay Campus, France; 11 National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom; 12 Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom; ¹³ Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

*aj.mitchell@anu.edu.au 🔰 @nuclearaj

Nuclear shapes near ¹⁸⁶W

Figure modified from 'The Colourful Nuclide Chart': https://people.physics.anu.edu.au/~ecs103/chart/

Atomic nuclei in rare-earth and transition elements, between axially symmetric, prolatedeformed ¹⁷⁰Dy at mid-shell and spherical, doubly magic ²⁰⁸Pb, have long been predicted to pass through a region of soft, triaxial shapes that evolve into oblate deformation as Z and/or N increase.

In the W isotopes, shape transitions and Kisomers associated with axially symmetric shapes have been identified. Energy systematics and $B(E2;2^+_1 \rightarrow 0^+_1)$ values indicate that ¹⁸⁶W, the focus of this work, lies beyond maximum axial deformation and is softening.

¹⁸³ lr 58 m	¹⁸⁴ lr 185.4 m	¹⁸⁵ ir 14.4 h	¹⁸⁶ lr 16.64 h	¹⁸⁷ ir 10.5 h	¹⁸⁸ lr 41.5 h	¹⁸⁹ ir 13.2 d	¹⁹⁰ lr 11.78 d	¹⁹¹ lr	¹⁹² ir 73.82 d	¹⁹³ lr
<i>Z</i> =76	¹⁸³ Os 13 h	¹⁸⁴ Os 11.2 Ty	¹⁸⁵ Os 92.95 d	¹⁸⁶ Os 2 Py	¹⁸⁷ Os	¹⁸⁸ Os	¹⁸⁹ Os	¹⁹⁰ Os	¹⁹¹ Os 14.99 d	¹⁹² Os
¹⁸¹ Re 19.9 h	¹⁸² Re 64.2 h	¹⁸³ Re _{70 d}	¹⁸⁴ Re 35.4 d	¹⁸⁵ Re	¹⁸⁶ Re 89.244 h	¹⁸⁷ Re 41.6 Gy	¹⁸⁸ Re 17 h	¹⁸⁹ Re 24.3 h	¹⁹⁰ Re 180 s	¹⁹¹ Re _{9.8 m}
<i>Z</i> =74	¹⁸¹ W 120.956 d	¹⁸² W	¹⁸³ W	¹⁸⁴ W	¹⁸⁵ W 75.1 d	186 ₩	¹⁸⁷ W 23.809 h	¹⁸⁸ W 69.77 d	¹⁸⁹ W 11.6 m	¹⁹⁰ W 30 m
¹⁷⁹ Та _{1.82 у}	¹⁸⁰ Ta 8.154 h	¹⁸¹ Ta	¹⁸² Ta 114.74 d	¹⁸³ Ta 5.1 d	¹⁸⁴ Ta ^{8.7 h}	¹⁸⁵ Ta 49.4 m	¹⁸⁶ Ta ^{10.5 m}	¹⁸⁷ Ta ^{138 s}	¹⁸⁸ Ta ^{19.6 s}	¹⁸⁹ Ta 20 s

Tungsten-186 is the heaviest stable W isotope. Its low-lying structure has been investigated; however, experimental data on the non-yrast, higher-spin states are sparse due to the lack of any suitable heavy-ion fusion-evaporation reaction.

While level spacings and lifetimes of ground-state-band members reveal the overall shape and collectivity, rotational side bands contain more nuanced information on softness to vibrations and axial asymmetry.

2707

2143

1672

Gammasphere + CHICO2, ATLAS Facility, Argonne National Laboratory USA

Gammasphere: https://www.anl.gov/phy/gammasphere. CHICO2: C. Y. Wu, et al. Nucl. Instrum. Meth. A 814, 6 (2016).

Inelastic scattering of ¹³⁶Xe beams at 725 and 800 MeV (10 and 20% above the Coulomb barrier, respectively).

Beams impinged upon a thin target of ¹⁸⁶W (99.8% enriched), 250-µg/cm² thick and backed by a 110- μ g/cm² thick, carbon foil.

Scattered beam- and target-like ions were detected and identified with the upgraded Rochester-Livermore 4π compact heavy-ion counter, CHICO2. Gamma-rays were detected by Gammasphere.

Laboratory scattering angle (deg)

50

40

20 30

Target-like

Projectile-like

E_{γ} (keV)

Band staggering

E. A. McCutchan et al., Phys. Rev. C 76, 024306 (2007); A. Davydov and G. Filippov, Nucl. Phys. 8, 237 (1958); L. Wilets and M. Jean, Phys. Rev. 102, 788 (1956).

18

15

12

9

 $\mathbf{0}$

3

0

-3

-0

-9

-12

 $\gamma = 5^{\circ}$

5

h

●. .● 186W

 $\gamma = 30^{\circ}$

 γ unstable

By finding and extending the odd-spin members of the γ band, the issue of rigid deformation versus triaxial softness can be explored through examination of the socalled even- and odd-spin staggering:

E 150

$$S(J) = \frac{\left[(E(J) - E(J-1)) \right] - \left[E(J-1) - E(J-2) \right]}{E(2_1^+)}$$

where the staggering parameter S(J) is determined from S(J)the energy differences between levels with $\Delta J = 1$ within the rotational band.

Staggering patterns predicted for a variety of nuclear shapes are shown to the right.

- Axial shapes have small, positive constant values.
- **Rigid triaxial** shapes have **positive** values for **even** *J*.
- **y-soft** shapes have **positive** values for **odd J**.

The $K^{\pi} = 2^+$ band...

... and the $K^{\pi} = 2^{-}$ band

F. K. McGowan, W. T. Milner, R. O. Sayer, R. H. Robin- son, and P. H. Stelson, Nucl. Phys. A 289, 253 (1977); G. Alaga, K. Alder, A. Bohr, and B. R. Mottelson, Dan. Mat. Fys. Medd. 29, 1 (1955).

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grants No. DE-FG02-94ER40848 (UML), No. DE- FG02-97ER41041 (UNC), No. DE-FG02-97ER41033 (TUNL) and DE-FG02-94-ER40834 (UMCP), and Contracts No. DE-AC02-06CH11357 (ANL) and No. DE-AC52-07NA27344 (LLNL), the International Technology Center Pacific (ITC-PAC) under Contract No. FA520919PA138 (ANU), and the National Science Foundation. The research used resources of ANL'S ATLAS facility, which is a DOE Office of Science user facility.

National Science Foundation WHERE DISCOVERIES BEGIN