Shapes, softness, and non-yrast collectivity in ${ }^{186}$ W

 Unital
*aj.mitchell@anu.edu.au 쿵 @nuclearaj

Nuclear shapes near 186W

Atomic nuclei in rare-earth and transition elements, between axially symmetric, prolatedeformed ${ }^{170} \mathrm{Dy}$ at mid-shell and spherical, doubly magic ${ }^{208} \mathrm{~Pb}$, have long been predicted to pass through a region of soft, triaxial shapes that evolve into oblate deformation as Z and/or N increase.
In the W isotopes, shape transitions and K isomers associated with axially symmetric shapes have been identified. Energy systematics and $B\left(E 2 ; 2^{+}{ }_{1} \rightarrow 0^{+}{ }_{1}\right)$ values indicate that ${ }^{186} \mathrm{~W}$, the focus of this work, lies beyond maximum axial deformation and is softening.

Tungsten-186 is the heaviest stable W isotope. Its low-lying structure has been investigated; however, experimental data on the non-yrast, higher-spin states are sparse due to the lack of any suitable heavy-ion fusion-evaporation reaction.
While level spacings and lifetimes of ground-state-band members reveal the overall shape and collectivity, rotational side bands contain more nuanced information on softness to vibrations and axial asymmetry.

Gammasphere + CHICO2, ATLAS Facility, Argonne National Laboratory USA

Inelastic scattering of ${ }^{136} \mathrm{Xe}$ beams at 725 and 800 MeV (10 and 20% above the Coulomb barrier, respectively).
Beams impinged upon a thin target of ${ }^{186} \mathrm{~W}$ (99.8% enriched), $250-\mu \mathrm{g} / \mathrm{cm}^{2}$ thick and backed by a $110-\mu \mathrm{g} / \mathrm{cm}^{2}$ thick, carbon foil.
Scattered beam- and target-like ions were detected and identified with the upgraded Rochester-Livermore 4π compact heavy-ion counter, CHICO2. Gamma-rays were detected by Gammasphere.

Level scheme from this work. Expansion of the rotational bands shown in red

Band staggering

By finding and extending the odd-spin members of the y band, the issue of rigid deformation versus triaxial softness can be explored through examination of the socalled even- and odd-spin staggering:

$$
S(J)=\frac{[(E(J)-E(J-1)]-[E(J-1)-E(J-2)]}{E\left(2_{1}^{+}\right)}
$$

where the staggering parameter $S(J)$ is determined from the energy differences between levels with $\Delta J=1$ within the rotational band.

Staggering patterns predicted for a variety of nuclear shapes are shown to the right.
Axial shapes have small, positive constant values.
Rigid triaxial shapes have positive values for even J.
γ-soft shapes have positive values for odd J.

178Hf: Axial rotor, lightly positive, near-constant $S(J)$
186W: γ-soft, with positive $S(J)$ values for odd-J spins
188Os: axial at low spin, small positive $S(J)$ values, but transitions to large, positive $S(J)$ for a rigid, triaxial shape.

The $\mathrm{K}^{\mathbf{\pi}} \mathbf{= 2}^{+}$band...	.. and the $\mathrm{K}^{\mathrm{T}}=2$ 2- band		
W. T.			
Staggering patterns observed in the W isotopes: - ${ }^{186}$ W staggering phase consistent with a y -soft potential (+ve values for odd J). - Other isotopes have limited data. - Further experiments needed to locate the oblate shape transition predicted in 186W			Can use Alaga rules to check: $\begin{array}{cccc} R= & \frac{B r_{\gamma}\left(3_{1}^{-} \rightarrow 2_{2}^{+}\right) \times E_{\gamma}\left(3_{1}^{-} \rightarrow 3_{1}^{+}\right)^{3}}{B r_{\gamma}\left(3_{1}^{-} \rightarrow 3_{1}^{+}\right) \times E_{\gamma}\left(3_{1}^{-} \rightarrow 2_{2}^{+}\right)^{3}} . \\ & \mathrm{R}(K=2) & \mathrm{R}(K=3) & \text { Expt. } \\ J=3- & 0.71 & 2.86 & 0.66(2) \\ J=4- & 1.66 & 1.66 & 1.50(8) \\ J=5 & 2.86 & 1.28 & <5 \end{array}$ Measured γ-decay branching ratios consistent with signature partners of a strongly coupled, $\mathrm{K} \pi=2$ - octupole vibrational band.
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grants \qquad Pacific (ITC-PAC) under Contract No. FA520919PA138 (ANU), and the National Science Foundation. The research used resources of ANL's ATLAS facility, which is a DOE Office of Science user facility.			

