

SIMSPEC-G: A NEW CODE FOR SIMULATING THE WORKING OF HPGE DETECTORS

Satya Samiran Nayak and Gopal Mukherjee

Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata-700064, INDIA

INTRODUCTION

Simulations help us better understand the working of a HPGe detector

- Can point to unaccounted processes playing important role in experiments
- Better insight about events leading to peak formation
- Reasonable estimate for various parameters like addback factor, efficiency, etc
- Illuminate the role of geometry in determining the above mentioned parameters

Basic code (SIMSPEC-G) to simulate the spectrum generated by HPGe detector

Confined to $E_{\gamma} \leq 1 \text{ MeV}$ (at present)

- Compton Scattering (CS)
- Photoelectric effect (PE)
- No pair production

PE and CS cross section data taken from photon cross section database at NIST^[1]

DETECTOR RESPONSE FOR $E_{\gamma} = 1$ MEV

Detector FWHM has been chosen to be 0.15 % of incident energy or 1.3 keV, whichever is larger

- The step behaviour arises from maximum energy that can be deposited by a given scattering process
- Back scattering involves at least 2 scattering events

The detector is of same dimensions The single crystal is divided into 4 segments

Break up of counts for different $c^n p$ according to # of segments they are spread across

				incident photon
# of	% of events in photo peak		energy	
in event	1 MeV	0.3 MeV		addback efficiency
1	52.888	71.733		

Contribution of different processes to photo peak

Inciden	it $\gamma=$ 0.3 MeV
200000	
180000	energy deposition
160000	occurs exactly in
140000	4 segments
120000	
100000	
80000	2 segments
60000	∎ 1 segment
40000	

DETERMINATION OF FIRST INTERACTION SEGMENT

Highest energy deposition in first interaction segment

Helpful in improving angular resolution of detector

- For 1 MeV γ photon
 - > Highest energy deposition in first interaction segment = 83.4 % of photopeak events

Remains relatively flat till 700 keV

ESTIMATION OF ADDBACK FACTOR

Variation of addback factor with γ energy

Parallel scattering counts for segmented clover and clover detector for

Energy deposition in 1 and in multiple segments

For 1 MeV γ photon • $52\% \rightarrow \text{inside 1 segment}, 48\% \rightarrow \text{in} > 1 \text{ segments}.$

Below 700 keV, single segment events increase to nearly 100% at \approx 100 keV Polarisation sensitivity is poor below 300 keV due to fewer multiple segment events

For $E_{\gamma} \leq 200 \text{ keV}$, we can take crystal angle information without much loss

ESTIMATION OF \geq 3 SEGMENT EVENTS

of \geq 3 seg. events in multi seg. events

0.8 0.7 0.9

0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.1 0.2 0.3 0.4 0.5 0.6 incident photon energy (MeV) incident photon energy (MeV)

HPGe SEGMENTED CLOVER SETUP

Segmented Clover Geometry

SEGMENTED CLOVER GEOMETRY

- Each crystal 60 cm x 90 cm
- Each segment is 30 cm x 90 cm
- Surface is a square of dimensions 120 cm x120 cm
- Covered with 3 mm thick Al on each face except for the front where the thickness is 1.5 mm
- A hole of diameter 6 mm is taken at the centre of the detector front surface

Variation of addback factor with γ energy

FUTURE PLANS

- Addition of Compton suppression shield
- Simulating an actual ⁶⁰Co source and ¹⁵²Eu source
- Introduction of pair production and other interactions

ACKNOWLEDGEMENT

Fruitful discussions with Soumik Bhattacharya, S. Bhattacharyya, R. Banik, S. Nandi, S Dar and S.

different incident gamma energy

Basu are gratefully acknowledged.

REFERENCES

[1] M. J. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, R. Sukumar, D. Zucker and K. Olsen, "XCOM: Photon Cross Sections Database," November 2020. [Online]. Available: www.nist.gov/pml/xcom-photoncrosssections-database