One Neutron Removal Cross Sections For ¹⁶N Isomeric State Miki Fukutome, Department of Physics, Osaka University

M. Fukuda^A, M. Tanaka^B, D. Nishimura^C, M. Takechi^D, T. Ohtsubo^D, M. Mihara^A, K. Matsuta^A, T. Suzuki^E, T. Yamaguchi^E, T. Izumikawa^D, S. Sato^F, S. Fukuda^F, A. Kitagawa^F, H. Takahashi^C, Y. Kimura^A, S. Sugawara^C, K. Takatsu^D, G. Takayama^A Osaka Univ.^A, RIKEN^B, Tokyo City Univ.^C, Niigata Univ.^D, Saitama Univ.^E, NIRS^F

OM MON /PA W/T / i

F3P]

<u>1. Introduction</u>

Nucleosynthesis(s-process) is thought to be progressing in the stars at very high temperature,

5. Setup and Particle Identification before and after reaction target

2

1.08

~ 1 GK, ~100 keV, ~ ¹⁶N isomer excitation energy
Isomer such as in ¹⁶N may contribute to nucleosynthesis
→ Nuclear structure of isomer

: Useful for understanding nucleosynthesis mechanism

2. Difference in nuclear structure between ground state(¹⁶N_{g.s.}) and isomeric state(^{16m}N)

Neutron binding energy ~ 2 MeV

6. Results

3. Measurement of one neutron removal cross sections

$$\sigma\left(-1n\right) = -\frac{1}{t}\ln\left(1-\frac{N_2}{N_1}\right)$$

<u>4. Two types of beams with different isomer ratios</u></u>

- The experimental results
- showed that $\sigma(-1n)$ was larger for the beam with a larger isomer ratio.
- It was also observed that this
- trend is larger for larger target mass number.
 - 7. Calculation

target:

it qualitatively suggests that ¹⁶N isomer is a neutron halo nucleus

>1,

ρ_z^T : density distribution by target nuclei **C(E)** : Coulomb force correction term

