Resonances in ¹¹C above ${}^{10}B+p$ threshold using thick target in inverse kinematics <u>Gurpreet Kaur^{1,*}, V. Guimaraes¹, J.C. Zamora¹, M. Assunção², J. Alcantara-Nunez¹, A.L. de Lara¹,</u> E.O.N. Zevallos¹, J.B. Ribeiro¹, R. Lichtenthäler¹, K.C.C. Pires¹, O.C.B. Santos¹, V. Morcelle³ and R.J. deBoer⁴ ¹Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil ²Departamento de Física, Universidade Federal de São Paulo, Diadema, SP, Brazil ³Departamento de Física, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil

⁴University of Notre Dame, Notre Dame, Indiana, USA

*email: gkaur.phy@gmail.com

ABSTRACT

Spectroscopy of ¹¹C has been investigated by the resonant scattering of ${}^{10}B + p$ with thick target inverse kinematic (TTIK) method. The ${}^{10}B(p, p){}^{10}B$ reaction was measured at $\theta_{cm} = 180^{\circ}$, 170°, 160°, 150° and 140° using a 35.93 MeV ¹⁰B beam. Resonances in ¹¹C between the excitation energy E*= 9.6 and 11.6 MeV are observed. The excitation function spectra are also compared to the direct kinematic measurement. To describe the obtained excitation functions, a multichannel R- matrix calculation under the kinematics assumption of resonant elastic scattering is performed and the resonant parameters such as the resonant energy E*, the spin-parity J_{π} , and the proton-decay partial width Γ_{n} are extracted.

INTRODUCTION

 \rightarrow Structural study of exotic nuclei has estalished new

EXPERIMENTAL DETAILS

- phenomena, such as halo structure, soft excitation modes, and rare β -delayed particle decays etc.
- → Above the particle threshold: inconsistencies between various reports on the properties, e.g. for a mirror pair of 11 C and 11 B.
- \rightarrow Possible resonance at 200 keV above the ¹⁰Be+p threshold in ¹¹B- associated to strong beta decay of ¹¹Be and dark matter production [1].
- \rightarrow Resonance structure in ¹¹C has important implications: (1) ⁷Be(α,γ) for astrophysics in the pp-chain of Sun
 - (2) ${}^{10}B(p,\alpha)^7Be$ as the contamination of the candidate of aneutronic fusion reaction ${}^{11}B(p,2\alpha)^{4}He$
 - (3) For the ${}^{10}B(p,\gamma)$ as competing reaction for the ${}^{10}B(p,\alpha)^7Be$ reaction.

- Resonances are more visible in spectra at $\theta_{cm} = 180^{\circ}$ impractical in direct kin.
- → To get spectra at 180° and for entire energy range with one incident energy- **Thick Target Inverse Kinematics (TTIK)** method [2].

• For normalization, a ¹⁹⁷Au target run was performed for short interval of time with a periodic repetition during the whole experiment.

• Natural carbon target runs were also performed to subtract the contribution from the reactions of the ¹⁰B beam with the carbon present in the polyethylene foil.

• E_{lab} of pure ¹⁰B beam= 38.4 MeV.

 \bullet The production target acts as an intensity

degrader, producing elastically scattered ¹⁰B

beamat 37.2 MeV with intensity of 10⁷ pps.

 \bullet Target: polyethylene plastic foil $[CH_2]_n$

MEASURED DATA, ANALYSIS & RESULTS

100 µm thick.

DISCUSSIONS AND CONCLUSION

- \rightarrow Four new states have been put in evidence above E*=10.5 MeV in ¹¹C, and their spin and parity have been proposed.
- While doing such measurements, the angular coverage should be as small as possible to reduce the broadening of peaks in the resonance structure.
- Concludes the validation of the data measured with TTIK technique with respect to the direct kinematics data.
- Method will be further useful to investigate the complex resonance structure of

REFERENCES

- [1] Y. Ayyad et al., Phys. Rev. Lett. 123, 082501 (2019).
- [2] K. P. Artemov et al., Sov. J. Nucl. Phys. 52, 406 (1990); M. Benjelloun et al., Nucl. Ins. and Meth. in Phys. Res. A321, 521-528 (1992).
- [3] M. Chiari, L. Giuntini, P. Mand, and N. Taccetti, Nucl. Instrum. Methods Phys. Res., Sect. B 184, 309 (2001).
- [4] R. E. Azuma, E. Uberseder, E. C. Simpson, C. R. Brune, H. Costantini, R. J. de Boer, J. Görres, M. Heil, P. J. LeBlanc, C. Ugalde, and M. Wiescher, Phys. Rev. C 81, 045805 (2010).

other exotic nuclei such as ¹¹B through ¹⁰Be+p resonant elastic scattering

measurement, which is our planned future work.

[5] M. Wiescher, R. J DeBoer, J. Gorres, R. E. Azuma, Phys. Rev. 95, 044617

