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1. ABSTRACT

In this work, we modify the Davydov-Chaban Hamiltonian
describing the collective motion of a γ-rigid atomic nucleus by
allowing the mass to depend on nuclear deformation. Exact
analytical expressions are derived for energy spectra as well as
normalized wave functions for Kratzer potential. The model
called Z(4)-DDM (Deformation Dependent Mass), is achieved
by using the Asymptotic Iteration Method (AIM). The numer-
ical calculations for energy spectra and B(E2)transition prob-
abilities are compared to the experimental data of 192−196Pt
isotopes.

2. FORMULATION OF THE MODEL

In the model of Davydov-Chaban, the Hamiltonian operator
with deformation dependent mass can be written as [1, 2][
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where β is the collective coordinate and γ a parameter, while
Qk are the components of angular momentum in the intrinsic
frame. The effective potential is given by
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where δ and λ are free parameters originated from the con-
struction procedure of the kinetic term within DDM formal-
ism, while, the reduced energies and potentials are defined as
ε = B0

~2 E, v(β) = B0
~2 V (β), respectively.

I The Kratzer potential [3]:
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↪→β0 : The position of the minimum of the potential.
I According to specific form of the potential, choose the de-
formation function in the following special form

f(β) = 1 + aβ, a << 1. (4)

↪→ a : free parameter
I The wave functions can be written as :

Ψ(β,Ω) = χ(β)φ(Ω). (5)

I The separation of variables leads to :[
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where Λ is the separation constant and ε = 2BE/~2.
The above equation has been solved by Meyer-ter-Vehn [4]
with the results
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where D(Ω) denotes Wigner functions of the Euler angles, L
is the total angular momentum quantum number, µ and α are
the quantum numbers of the projections of angular momen-
tum on the laboratory fixed z-axis and the body-fixed x′-axis,
respectively.

3. THE ENERGY SPECTRUM

I Solving the radial equation Eq. (6) through the AIM, we
obtain the radial energy eigenvalues
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where nβ is the principal quantum number of β vibrations.
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I The bands in the present model are classified by the quan-
tum numbers n, nγ and nw = L− α :
↪→The ground state band (gsb) : n = nγ = nw = 0,
↪→The β band : n = 1, nγ = 0, nw = 0,
↪→The γ band : n = nγ = 0, if L even nw = 2 and

if L odd with nw = 1.

4. THE RADIAL WAVE FUNCTIONS

I The radial functions RnβL(β) of Eq. (6) are given by

RnβL(β) = CnβL a
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I To determine CnβL, we use the usual orthogonality relation
of Jacobi polynomials, obtaining
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5. NUMERICAL RESULTS

The Z(4) DDM-K model presented in the previous sections has
been applied for calculating the energies of the collective states,
the reduced E2 transition probabilities and the staggering of
the γ-band for the 192,194,196Pt isotopes.
I Energies of the collective states :
In this work the theoretical predictions for the levels Eq. (10)
are treated equally, depending on two parameters, namely: a
the deformation mass parameter and β0 the minimum of the
potential. These parameters are adjusted to reproduce the ex-
perimental data by applying a least-squares fitting procedure
for each considered isotope.
We evaluate the root mean square (rms) deviation between the
theoretical values and the experimental data by

σ =
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where m denotes the number of states, while Ei(exp) and
Ei(th) represent the theoretical and experimental energies of
the ith level, respectively.

↪→ In Table1, we see that the obtained results for the levels
belonging to the ground state, β, and γ-bands are in a quite sat-
isfactory agreement with the corresponding experimental data.

192Pt 194Pt 196Pt
L exp th exp th exp th

gsb gsb gsb gsb gsb gsb
4 2.479 2.451 2.470 2.506 2.465 2.455
6 4.314 4.129 4.298 4.334 4.290 4.144
8 6.377 5.844 6.392 6.306 6.333 5.877
10 8.624 7.472 8.672 8.280 8.558 7.528

β1 β1 β1 β1 β1 β1
0 3.776 3.768 3.858 3.806 3.192 3.124
2 4.547 4.472 4.603 4.555 3.828 3.844

γ1 γ1 γ1 γ1 γ1 γ1
2 1.935 1.900 1.894 1.926 1.936 1.902
3 2.910 2.714 2.809 2.786 2.854 2.719
4 3.795 4.548 3.743 4.806 3.636 4.566
5 4.682 4.748 4.563 5.034 4.526 4.769
6 5.905 6.785 7.434 5.644 6.830
7 6.677 6.637 7.255 6.681
σ 0.500 0.390 0.576
β0 50.0 70.6 51.0
a 0.002 0.004 0.006

Table 1: Comparison of the present model for energy levels to
experimental data [5].

I Electric quadrupole transitions :

Similarly, we have calculated the intraband and interband
B(E2) transition rates, normalized to the B(E2; 2+

g −→ 0+
g )

rate. For triaxial nuclei around γ ≈ π/6, the quadrupole oper-
ator becomes
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The B(E2) rates from an initial to a final state are given by
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L(i)→L(f)

2g→0g

192Pt 194Pt 196Pt
exp th exp th exp th

4g → 2g 1.56 1.58 1.73 1.56 1.48 1.63
6g → 4g 1.23 2.38 1.36 2.31 1.80 2.58
8g → 6g 3.32 1.02 3.19 1.92 3.86
10g → 8g 4.61 0.69 4.41 5.91
2γ → 2g 1.91 1.60 1.81 1.58 1.65
2γ → 0g×103 9.5 0.0 5.9 0.0 0.4 0.0
0β → 2g 0.70 0.01 0.67 0.07 0.9
2β → 0g×103 17.36 25.08 0.06 23.16

Table 2: Comparison of the present model forB(E2) transition
rates to experimental data [5].

↪→ In Table 2, we compare our theoretical calculations with
the available experimental data. The overall agreement is good
for transitions within the ground state band with exception of
the higher L levels. In what concerns the interband transitions
rates between the γ to the g.s. band, our theoretical calculations
give good results, while interband transitions from β band to
g.s. band tend to be overpredicted.

I The staggering of the γ-band :
An other sensitive signature for triaxiality structure, which has to be studied, is obviously the odd-even staggering of the level
energies within the γ-band, described by the following quantity : S(J) = [E(J+

γ ) + E((J − 2)+γ )− 2E((J − 1)+γ )]/E(2+
1 ).
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Figure 1: The staggering behavior S(J) of 192,194,196Pt (Exp) [5] compared with Z(4) DDM-K and Z(4) [6] models.

↪→ In Figure 1, we plotted the function S(J) for the nuclei considered here. As it is shown, the staggering of 192Pt and 194Pt

isotopes is well reproduced by Z(4) DDM-K, while for 196Pt the agreement is not good.

6. CONCLUSION

IThe solution called Z(4) DDM-K, is achieved by means of
the Asymptotic Iteration Method. Analytical expressions for
the spectra and wave functions have been obtained.
I Energy spectra and B(E2) transitions have been calculated
for triaxial nuclei and then these have been compared with ex-
perimental data.
IThe predicted energy spectra and B(E2) values are in good
agreement with the experimental data for 192−196Pt.
I We have investigated the role of Kratzer potential in avoid-
ing the level spacings within the β bands.
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