Recent studies of heavy ion transfer reactions using large solid angle magnetic spectrometers

Suzana Szilner Ruđer Bošković Institute, Zagreb PRISMA collaboration

AFRICAN NUCLEAR PHYSICS CONFERENCE (ANPC2021)

African Nuclear Physics Conference 2021

THE PRISMA + CLARA/AGATA CAMPAIGNS

THE PRISMA + CLARA/AGATA CAMPAIGNS

N=28

L. Corradi, G. Pollarolo, F. Galtarossa, A. Goasduff, D. Montanari, E. Fioretto, A.M. Stefanini, G. Montagnoli, G. Coucci, F. Scarlassara, J.J. Valiente-Dobon, D. Mengoni, G. de Angelis, A. Gottardo, T. Marchi, D. Testov...

A. Illana, L.P. Gaffney, Th. Kroll ...

J. Diklić, T. Mijatović, P. Čolović, D. Jelavić Malenica, N. Soić, N.

Vukman, M. Milin

AGATA collaboration

Ruđer Bošković Institute, Zagreb, Croatia INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy INFN and Universita di Torino, Italy INFN and Universita di Padova, Padova, Italy University of Zagreb, Croatia ISOLDE, CERN

Magnetic spectrometer PRISMA

Heavy ion transfer reactions

Coulomb barrier energies

Probing nucleon-nucleon correlations in transfer reactions

The pairing interaction induces particle-particle correlations that are essential in defining the properties of finite quantum many body systems in their ground and neighboring states. These structure properties may influence in a significant way the evolution of the collision of two nuclei.

Heavy ion transfer reactions:

Advantages: test of correlation properties in transfer processes via simultaneous comparison of $\pm n$ and $\pm p$, and $\pm nn/\pm pp/\pm np$ pairs; transfer of "many" pairs HI drawbacks: limited A,Z, energy resolutions (two-nucleon transfer \rightarrow redistribution of the strength around single particle states)

Nucleon-nucleon correlations studied with PRISMA

¹¹⁶Sn+⁶⁰Ni, inverse kinematic, excitation function (detection of (lighter) target-like fragment in PRISMA: $E_{beam} = 500 \text{ MeV} - 410 \text{ MeV}$ (D ~ 12.3 to 15.0 fm)

⁹⁶Zr+⁴⁰Ca, ¹¹⁶Sn+⁶⁰Ni, ⁹²Mo+⁵⁴Fe, ²⁰⁶Pb+¹¹⁶Sn direct + inverse kinematic, PRISMA and PRISMA+CLARA/AGATA/LaBr (7 experiments)

⁹⁶Zr+⁴⁰Ca: S. Szilner et al., Phys. Rev. C 76 (2007) 024604; L. Corradi et al., Phys. Rev. C 84 (2011) 034603

¹¹⁶Sn+⁶⁰Ni: D. Montanari et al., Phys. Rev. Lett.
113 (2014) 052501; D. Montanari et al., Phys. Rev.
C 93 (2016) 054623

D. Montanari et. al., PRL 113 (2014) 052501

¹¹⁶Sn+⁶⁰Ni: neutron pair transfer far below the Coulomb barrier

Transfer strength very close to the g.s. to g.s. transitions

⁶⁰Ni+¹¹⁶Sn, ⁴⁰Ca+⁹⁶Zr, ⁵⁴Fe+⁹²Mo: fragment - gamma measurements (PRISMA+CLARA/AGATA/LaBr)

 ⁶⁰Ni+¹¹⁶Sn: angular distributions measurement in "direct" kinematic:
 E_{beam} = 245 MeV at 70° (D ~ 14.5 fm)

⁶⁰Ni+¹¹⁶Sn, ⁴⁰Ca+⁹⁶Zr, ⁵⁴Fe+⁹²Mo: fragment - gamma measurements (PRISMA+CLARA/AGATA/LaBr)

The strengths (normalized to $2^+ \rightarrow 0^+$ in ⁶⁰Ni) of the most important transitions are compared with a reaction code (DWBA, CC, SF) \rightarrow a direct check on the oneparticle form factors (1n), and of the potential

(2n): $\sigma_{g,s} = \sigma_{tot} - \sigma_{exc} \rightarrow$ the transitions to the excited states contribute to the total strength: <24%, dominant population of the ground states

2000	. 00	
	Experiment	Theory
$^{116}Sn(2^+)$	0.792 ± 0.160	0.720
$^{116}Sn(4_1^+)$	0.042 ± 0.011	0.056
${}^{60}\mathrm{Ni}(4^+_1)$	0.060 ± 0.013	0.11
$^{115}Sn(5/2^+)$	0.018 ± 0.003	0.037
$^{61}\mathrm{Ni}(1/2^{-})$	0.014 ± 0.003	0.033
${}^{62}\mathrm{Ni}(2^+)$	< 0.00145	<u> </u>
	\mathbb{E}_{γ} [keV]	

$$D = \frac{Z_a Z_A e^2}{E_{\text{c.m.}}} \left(1 + \frac{1}{\sin(\theta_{\text{c.m.}}/2)} \right)$$

¹¹⁶Sn+⁶⁰Ni: two particle transfer (semiclassical theory, microscopic calculations, 2nd order Born app.)

$$\begin{aligned} (c_{\beta})_{\text{succ}} &= \frac{1}{\hbar^2} \sum_{a_1, a_1'} B^{(A)}(a_1 a_1; 0) B^{(a)}(a_1' a_1'; 0) 2 \frac{(-1)^{j_1 + j_1'}}{\sqrt{(2j_1 + 1)} \sqrt{(2j_1' + 1)}} \sum_{m_1 m_1'} (-1)^{m_1 + m_1'} \\ &\times \int_{-\infty}^{+\infty} dt f_{m_1 m_1'}(\mathcal{R}) e^{i[(E_{\beta} - E_{\gamma})t + \delta_{\beta\gamma}(t) + \hbar(m_1' - m_1)\Phi(t)]/\hbar} \\ &\times \int_{-\infty}^{t} dt f_{-m_1 - m_1'}(\mathcal{R}) e^{i[(E_{\gamma} - E_{\alpha})t + \delta_{\gamma\alpha}(t) - \hbar(m_1' - m_1)\Phi(t)]/\hbar}. \end{aligned}$$

⁶⁰Ni+¹¹⁶Sn: neutron pair transfer far below the Coulomb barrier

The experimental transfer probabilities are well reproduced, in absolute values and in slope by microscopic calculations which incorporate nucleon-nucleon correlations: \checkmark a consistent description of (1n) and (2n) channels

✓ the formalism for (2n) incorporates the contribution from both the simultaneous and successive terms (only the ground-to-ground-state transition has been calculated)
 ✓ character of pairing correlations manifests itself equally well in simultaneous and in successive transfers due to the correlation length

The Josephson effect in nuclear physics

For distances of closest approach compatible with the correlation length ξ the two nucleons behave like (quasi)bosons

 $P_2 \approx P_1$

² 10⁻²

 10^{-3}

10⁻⁴

13

14

D [fm]

15

16

At large distances of closest approach the Cooper pairs loose their (quasi)boson character and acquire a quasiparticle nature. One has a simple tunnelling of nucleons through the inner barrier

Phys. Rev. C 103 (2021) L021601

²⁰⁶Pb+¹¹⁸Sn: complex reaction mechanism

INFN – LNL, PRISMA spectrometer, 2018, L. Corradi, S. Szilner, J. Diklić, Ph.D. Thesis

Nucleon transfer: exp. vs microscopic calculatons

L. Corradi et al., PRC 84 (2011) 034603

D. Montanari et al., PRL 113 (2014) 052501 PRC 93 (2016) 054623

Nucleon transfer: exp. vs microscopic calculatons

Synthesis of heavy neutron rich nuclei in labs

Fusion by using neutron-rich radioactive beams \rightarrow the intensity of the beams rather small (accelerators)

Neutron capture reaction \rightarrow the intensity of the neutron beams is small (reactors)

relativistic energies : fragmentation reactions energies close to the Coulomb barrier : multinucleon transfer reactions \rightarrow cross sections $\sim \mu b - nb$ \rightarrow detection systems: large solid angle, large efficiency, large selectivity...

multinucleon transfer reactions: ¹³⁶Xe + ¹⁹⁸Pt @ E_{lab}= 8 MeV/A

fragmentation reactions: ²⁰⁸Pb + ⁹Be @ E_{lab}= 1 GeV/A

Y. Watanabe et al, Phys. Rev. Lett. 115 (2015) 172503, T. Kurtukian-Nieto et al., Phys. Rev. C 89 (2014) 024616.

Multinucleon transfer reactions

Xe (Z=54) ¹¹⁸Xe ($T_{1/2} = 4 \text{ min}$) ¹³⁶Xe ("the last" stable) ¹⁵⁴Xe (no information)

TH: C.H. Dasso, G. Pollarolo and A. Winther, Phys. Rev. Lett. 73 (1994) 1907. EXP: L. Corradi, G. Pollarolo, S. Szilner, J. Phys. G 36 (2009) 113101 (Special Topic)

⁴⁰Ar+²⁰⁸Pb, ⁴⁰Ca+²⁰⁸Pb, and ⁵⁸Ni+²⁰⁸Pb

Above the barrier: \rightarrow many open channels, transfer of 5-10 protons and neutrons governed by optimum Q-value \rightarrow large TKEL, onset of DIC components \rightarrow secondary processes: evaporation, transfer induced fission

T. Mijatovic et al., Phys. Rev. C 94 (2016) 064616

⁴⁰Ar+²⁰⁸Pb

Wilczynski plots

 [^]Reaction develops from quasielastic to deep inelastic
 [^]Secondary processes are important (fission, evaporation of neutrons may strongly modify the final cross sections) → survival probability of the heavy binary partner

T. Mijatović et al., Phys. Rev. C 94 (2016) 064616

+2n channel: ⁴⁰Ar+²⁰⁸Pb → ⁴²Ar+²⁰⁶Pb

~90% of the yield corresponds to the true binary partner (²⁰⁶Pb)

40Ar+208Pb

Wilczynski plots

 [^]Reaction develops from quasielastic to deep inelastic
 [^]Secondary processes are important (fission, evaporation of neutrons may strongly modify the final cross sections) → survival probability of the heavy binary partner

T. Mijatović et al., Phys. Rev. C 94 (2016) 064616

+2n channel: ⁴⁰Ar+²⁰⁸Pb → ⁴²Ar+²⁰⁶Pb

~90% of the yield corresponds to the true binary partner (²⁰⁶Pb)

¹⁹⁷Au+¹³⁰Te: coincident detection of binary partners

- F. Galtarossa et al., Phys. Rev. C 97 (2018) 054606
- E. Fioretto et al. Nucl. Inst. and Meth. A 899 (2018) 73
- A gas detection system for fragment identification in low-energy heavy-ion collisions

¹⁹⁷Au+¹³⁰Te

¹⁹⁷Au+¹³⁰Te: coincident detection of binary partenrs

Multinucleon transfer reactions are a suitable tool for the production of heavy neutron-rich nuclei Te isotopes with "more" neutrons than in ¹³⁰Te Au isotopes with "more" neutrons than in ¹⁹⁷Au

ISOLDE – CERN: MINIBALL + CD particle detector \rightarrow fragment-gamma(-gamma) coincidencies

P. Čolović et al. PRC 102 (2020) 054609 Population of lead isotopes in binary reactions using a 94Rb radioactive beam

ISOLDE EXP IS572, spokespersons: J.J. Valiente Dobon and S. Szilner

Matrix of total kinetic energy vs angle \rightarrow fragments (top) and fragmentsgamma coincidencies (bottom)

Prompt, up to 200 ns (top), and delayed, up to 2 μ s (bottom) γ -ray spectra taken in coincidence with the Rb-like detected in CD detector

208Pb

Differential cross sections for the inelastic scattering of the 3⁻ state in ²⁰⁸Pb. Data have been normalized at forward angles to the DWBA calculation. Experimental quasielastic cross sections and theoretical elastic scattering, divided by Rutherford cross section.

Total cross sections of Pb isotopes compared with the GRAZING calculations. The measured cross sections are indicated as lower limits, while those which include the estimated values for the ground states are indicated with full points.

P. Čolović et al. PRC 102 (2020) 054609

GRAZING calculated total cross sections for Pb isotopes in ⁹⁴Rb+²⁰⁸Pb and ⁸⁷Rb+²⁰⁸Pb reactions

Total cross sections of Pb isotopes compared with the GRAZING calculations. The measured cross sections are indicated as lower limits, while those which include the estimated values for the ground states are indicated with full points.

P. Čolović et al. PRC 102 (2020) 054609

What new directions could stable ion beams and novel instrumentation bring to further our understanding of dynamics through gamma-ray spectroscopy?

What new directions could stable ion beams and novel instrumentation bring to further our understanding of dynamics through gamma-ray spectroscopy?

Excited states in yttrium isotopes

W. Iskra et al, Phys. Scr. 92 (2017) 104001

Excited states in yttrium isotopes

Excited states in yttrium isotopes

V

V

Y

L. Corradi, G. Pollarolo, J. Diklić, T. Mijatović, F. Galtarossa, P. Čolović, A. Goasduff, D. Montanari, E. Fioretto, A.M. Stefanini, G. Montagnoli, G. Coucci, F. Scarlassara, J.J. Valiente-Dobon, D. Mengoni, D. Jelavić Malenica, N. Soić, N. Vukman, M. Milin, D. Nurkić and CLARA-AGATA collaboration

Ruđer Bošković Institute, Zagreb, Croatia INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy INFN and Universita di Torino, Italy INFN and Universita di Padova, Padova, Italy University of Zagreb, Croatia ISOLDE, CERN

Kokopelli: links distant and diverse communities together.

This work was partly supported by the Croatian Science Foundation under the project IP-2018-01-1257.