#### Muon g-2 in the standard model and a lattice QCD calculation of the leading hadronic contribution

#### Laurent Lellouch

CPT & IPhI I Marseille CNRS & Aix-Marseille U

Budapest-Marseille-Wuppertal collaboration [BMWc] Borsanyi, Fodor, Guenther, Hoelbling, Katz, LL, Lippert, Miura, Szabo, Parato, Stokes, Toth, Torok, Varnhorst

Nature 593 (2021) 51, online 7 April 2021  $\rightarrow$  BMWc '20 PRL 121 (2018) 022002 (Editors' Selection) → BMWc '17 & Aoyama et al., Phys. Rept. 887 (2020) 1-166  $\rightarrow$  WP '20

















## The Standard Model on a page

Relativistic quantum field theory that describes all known elementary particles and three of the four fundamental interactions



 $ightarrow m_{\mu} \simeq 207 imes m_{
m e} \ \& \ au_{\mu} \simeq 2 imes 10^{-6} \, {
m sec}$ 

 $e^{+}$ 

## Why go beyond the Standard Model?

SM is an incredibly successful theory: since mid 70's it has been tested against experiment thousands of times and has never failed

Particle Data Group's "Review of Particle Physics":  $\sim$  2100 pp. of measurements, almost all explained/explainable by SM







(D.N. Spergel, Science '15)

However, SM leaves important questions unanswered:

- Why three families of matter particles?
- How do neutrinos acquire mass?
- Can the 26 parameters needed to describe elementary particles be predicted?
- Is the Higgs mechanism all there is to electroweak symmetry breaking?
- How to include gravity?
- Why do we see more matter than antimatter in the universe?
- What is dark matter?
- Why is the expansion of the universe accelerating?
- ...

# Searching for new fundamental physics



**Strategy:** measure observable as precisely as possible and compute SM prediction w/ commensurate precision

measurement = SM prediction ?

If not, then new fundamental physics

- Cosmic frontier: use the universe as an observatory to learn about particles physics
  - $\rightarrow$  e.g. is dark matter a new elementary particle?
- Energy frontier: particle beams are collided at the highest possible energies to directly produce new particles and phenomena
  - $\rightarrow$  e.g. is the Higgs whose properties are measured at the LHC really just the SM Higgs?
- Intensity frontier: high-flux beams and/or high-precision, low-energy experiments are used to indirectly uncover new particles or forces in effects of minute quantum fluctuations
  - → e.g. does the measurement of the magnetic moment of the muon harbor physics beyond the SM?



## Leptons in magnetic fields: early history of electron

A massive particle w/ electric charge and spin behaves like a tiny magnet in a magnetic field

The Dirac eqn (1928) predicts that a lepton  $\ell$  has magnetic moment



$$\vec{\mu}_{\ell} = \mathbf{g}_{\ell} \left( \frac{\mathbf{e}_{\ell}}{2m_{\ell}} \right) \vec{S}, \qquad \vec{S} = \hbar \frac{\vec{\sigma}}{2}$$

$$a_{\ell}|_{\text{Dirac}}=2$$



"That was really an unexpected bonus for me" (P.A.M. Dirac)

- In 1934, Kinsler & Houston confirmed  $g_e=2$  to  $\sim 0.1\%$  w/ Zeeman effect in neon
- However in 1947, Nafe, Nels & Rabi observe a deviation of g<sub>e</sub>=2 in hyperfine structure of hydrogen and deuterium, then measured precisely by Kusch & Foley
  - → deviation at 0.1% level



Schwinger (1947) immediately understands that effect comes from quantum, particle fluctuations in the vacuum and computes

$$a_{\rm e}\equiv\frac{g_{\rm e}-2}{2}=\frac{\alpha}{2\pi}=0.0116\cdots$$

⇒ birth of QED and relativistic quantum field theory

#### Why so excited about the muon magnetic moment?

$$\ell_{R}$$
  $\longrightarrow$   $\frac{a_{\ell}}{2m_{\ell}}eF^{\mu\nu}[ar{\ell}_{L}\sigma_{\mu\nu}\ell_{R}]$ 

- Actually interested in a<sub>ℓ</sub> = (g<sub>ℓ</sub> 2)/2, ℓ = e, µ: finite to all orders in renormalizable theories and measured, very precisely ⇒ excellent tests of SM and BSM theories
- Loop induced ⇒ sensitive to dofs that may be too heavy or too weakly coupled to be produced directly
- CP and flavor conserving, chirality flipping ⇒ complementary to: EDMs, s and b decays, LHC direct searches, . . .
- As early as 1956, Berestetskii noted that sensitivity of  $a_\ell$  to contributions of heavy particles w/  $M \gg m_\ell$  typically goes like  $\sim (m_\ell/M)^2$ 
  - $\Rightarrow a_{\mu}$  is  $(m_{\mu}/m_e)^2 \sim 43,000$  times more sensitive to heavy dofs than  $a_e$
  - $\Rightarrow$   $a_{\mu}$  sensitive to possibly unknown, heavy dofs
- Despite  $\tau_{\mu} \sim 2\,\mu$ s,  $a_{\mu}$  measured in 1960 [Garwin et al '60]  $\rightarrow$  measurements progressed in // with the development of the SM, each new experiment probing theory to a new level
- Early 2000s, BNL measured  $a_{\mu}$  to 0.54 ppm: EW contribution seen at  $3\sigma$  level  $\rightarrow$  But also excess over SM prediction  $\sim$  2× EW contribution

## Why so excited about the muon magnetic moment?

- Since then, persistent tension between measurement & SM  $> 3.5\sigma$
- To decide on possible presence of BSM physics:
  - significant upgrade of BNL experiment @ FNAL w/ goal to reduce measurement error by factor of 4
  - important theoretical effort to improve SM prediction to same level
- ⇒ White Paper from the muon g 2 Theory Initiative posted on arXiv in June 2020 w/ reference SM prediction [Aoyama et al '20 = WP '20]
- ⇒ Presentation and publication on April 7 of FNAL's first results (only 6% of planned data)
  - → tour de force measurement confirms BNL result w/ already improved precision
  - $\rightarrow$  reduces WA error to 0.35 ppm and increases tension w/ SM to 4.2 $\sigma$
- Same day, Nature published our ab-initio calculation of hadronic vacuum polarization contribution to the SM prediction that brings it much closer to measurement of  $a_{\mu}$

#### Big question:

$$a_{\mu}^{\text{exp}} = a_{\mu}^{\text{SM}}$$
?

If not, there must be new  $\Phi$ 



# Measurement principle for $a_{\mu}$



#### Precession determined by

$$ec{\mu}_{\mu}=2(1+rac{a_{\mu}}{2m_{\mu}})rac{Qe}{2m_{\mu}}ec{S}$$
  $ec{d}_{\mu}=\eta_{\mu}rac{Qe}{2m_{\mu}c}ec{S}$ 



$$\vec{\omega}_{a\eta} = \vec{\omega}_a + \vec{\omega}_{\eta} = -\frac{Qe}{m_{\mu}} \left[ \mathbf{a}_{\mu} \vec{B} + \left( \mathbf{a}_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] - \eta_{\mu} \frac{Qe}{2m_{\mu}} \left[ \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right]$$

• Experiment measures very precisely  $\vec{B}$  with  $|\vec{B}| \gg |\vec{E}|/c$  &

$$\Delta\omega \equiv \omega_{\mathcal{S}} - \omega_{\mathcal{C}} \simeq \sqrt{\omega_a^2 + \omega_\eta^2} \simeq \omega_a$$

since  $d_{\mu}=0.1(9) imes 10^{-19}e\cdot \mathrm{cm}$  (Benett et al '09)

• Consider either magic  $\gamma = 29.3$  (CERN/BNL/Fermilab) or  $\vec{E} = 0$  (J-PARC)

$$ightarrow \Delta\omega \simeq -{\color{blue}a_{\mu}}B{\color{blue}Qe\over m_{\mu}}$$

# Fermilab E989 @ magic $\gamma$ : measurement (simplified)



# $g_{\mu}$ – 2 updated history (7 April 2021)

History of muon anomaly measurements and predictions



$$a_{\mu}(AVG) = 116592061(41) \times 10^{-11}$$
 (0.35 ppm).

G. Venanzoni, CERN Seminar, 8 April 2021

Bathroom scale sensitive to the weight of a single eyelash !!!

Based on only 6% of expected FNAL data!  $\rightarrow$  aim  $\delta a_{\mu} = 0.14 \, \text{ppm}$ 

Laurent Lellouch

# Standard model calculation of $a_{\mu}$

At needed precision: all three interactions and all SM particles

$$\begin{aligned} a_{\mu}^{\text{SM}} &=& a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{EW}} \\ &=& O\left(\frac{\alpha}{2\pi}\right) + O\left(\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{M_{\rho}}\right)^2\right) + O\left(\left(\frac{e}{4\pi \sin \theta_W}\right)^2 \left(\frac{m_{\mu}}{M_W}\right)^2\right) \\ &=& O\left(10^{-3}\right) + O\left(10^{-7}\right) + O\left(10^{-9}\right) \end{aligned}$$



#### QED contributions to $a_{\ell}$

Loops with only photons and leptons

$$\begin{split} \boldsymbol{a}_{\ell}^{\mathsf{QED}} &= \boldsymbol{C}_{\ell}^{(2)} \left(\frac{\alpha}{\pi}\right) + \boldsymbol{C}_{\ell}^{(4)} \left(\frac{\alpha}{\pi}\right)^2 + \boldsymbol{C}_{\ell}^{(6)} \left(\frac{\alpha}{\pi}\right)^3 + \boldsymbol{C}_{\ell}^{(8)} \left(\frac{\alpha}{\pi}\right)^4 + \boldsymbol{C}_{\ell}^{(10)} \left(\frac{\alpha}{\pi}\right)^5 + \cdots \\ \boldsymbol{C}_{\ell}^{(2n)} &= \boldsymbol{A}_{1}^{(2n)} + \boldsymbol{A}_{2}^{(2n)} (m_{\ell}/m_{\ell'}) + \boldsymbol{A}_{3}^{(2n)} (m_{\ell}/m_{\ell'}, m_{\ell}/m_{\ell''}) \end{split}$$

- $\bullet \ \ A_1^{(2)}, \ A_1^{(4)}, \ A_1^{(6)}, \ A_2^{(4)}, \ A_2^{(6)}, \ A_3^{(6)} \ \ \text{known analytically} \ \ \text{(Schwinger '48; Sommerfield '57, '58; Petermann '57; ...)}$
- $O((\alpha/\pi)^3)$ : 72 diagrams (Laporta et al '91, '93, '95, '96; Kinoshita '95)
- $O((\alpha/\pi)^4; (\alpha/\pi)^5)$ : 891;12,672 diagrams (Laporta '95; Aguilar et al '08; Aoyama, Kinoshita, Nio '96-'18)
  - Automated generation of diagrams
  - Numerical evaluation of loop integrals
  - Only some diagrams are known analytically
  - Not all contributions are fully, independently checked

#### 5-loop QED diagrams



# QED contribution to $a_{\mu}$

$$a_{\mu}^{\text{QED}}(Cs) = 1165\,847\,189.31(7)_{m_{\tau}}(17)_{\alpha^{4}}(6)_{\alpha^{5}}(100)_{\alpha^{6}}(23)_{\alpha(Cs)} \times 10^{-12}$$
 [0.9 ppb]  $a_{\mu}^{\text{QED}}(a_{e}) = 1165\,847\,188.42(7)_{m_{\tau}}(17)_{\alpha^{4}}(6)_{\alpha^{5}}(100)_{\alpha^{6}}(28)_{\alpha(a_{e})} \times 10^{-12}$  [0.9 ppb]

(Aoyama et al '12, '18, '19)

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{QED}} = 734.2(4.1) \times 10^{-10}$$
 $\stackrel{?}{=} a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}}$ 

## Electroweak contributions to $a_{\mu}$ : Z, W, H, etc. loops

#### 1-loop





$$a_{\mu}^{\text{EW},(1)} = O\left(\frac{\sqrt{2G_F}m_{\mu}^2}{16\pi^2}\right)$$
  
= 19.479(1) × 10<sup>-10</sup>

(Gnendiger et al '15, Aoyama et al '20 and refs therein)

#### 2-loop







$$a_{\mu}^{\text{EW},(2)} = O\left(\frac{\sqrt{2}G_{\text{F}}m_{\mu}^{2}}{16\pi^{2}}\frac{\alpha}{\pi}\right)$$
  
=  $-4.12(10) \times 10^{-10}$ 

(Gnendiger et al '15 and refs therein)

$$a_{\mu}^{\rm EW}=15.36(10)\times 10^{-10}$$

## Hadronic contributions to $a_{\mu}$ : quark and gluon loops

$$a_{\mu}^{ ext{exp}} - a_{\mu}^{ ext{QED}} - a_{\mu}^{ ext{EW}} = 718.9(4.1) imes 10^{-10} \stackrel{?}{=} a_{\mu}^{ ext{had}}$$

Clearly right order of magnitude:

$$a_{\mu}^{had} = O\left(\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{M_{\rho}}\right)^2\right) = O\left(10^{-7}\right)$$

(already Gourdin & de Rafael '69 found  $a_{\mu}^{had} = 650(50) \times 10^{-10}$ )

Huge challenge: theory of strong interaction between quarks and gluons, QCD, hugely nonlinear at energies relevant for  $a_{ij}$ 

- ightarrow perturbative methods used for electromagnetic and weak interactions do not work
- → need nonperturbative approaches

Write

$$a_{\mu}^{\mathsf{had}} = a_{\mu}^{\mathsf{LO-HVP}} + a_{\mu}^{\mathsf{HO-HVP}} + a_{\mu}^{\mathsf{HLbyL}} + O\left(\left(rac{lpha}{\pi}
ight)^4
ight)$$

# Hadronic contributions to $a_{\mu}$ : diagrams

$$\rightarrow a_{\mu}^{\text{LO-HVP}} = O\left(\left(\frac{\alpha}{\pi}\right)^{2}\right)$$

$$+ \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad \qquad + \qquad$$

## Hadronic light-by-light



- $\bullet$  HLbL much more complicated than HVP, but ultimate precision needed is  $\simeq 10\%$  instead of  $\simeq 0.2\%$
- For many years, only accessible to models of QCD w/ difficult to estimate systematics (Prades et al '09):
   a<sup>HLbL</sup><sub>u</sub> = 10.5(2.6) × 10<sup>-10</sup>
- Also, lattice QCD calculations were exploratory and incomplete
- Tremendous progress in past 5 years:
  - → Phenomenology: rigorous data driven approach [Colangelo, Hoferichter, Kubis, Procura, Stoffer... '15-'20]
  - → Lattice: first two solid lattice calculations
- All agree w/ older model results but error estimate much more solid and will improve
- Agreed upon average w/ NLO HLbL and conservative error estimates [WP '20]
- $a_{\mu}^{\text{exp}} a_{\mu}^{\text{QED}} a_{\mu}^{\text{EW}} a_{\mu}^{\text{HLbL}} = 709.7(4.5) \times 10^{-10} \stackrel{?}{=} a_{\mu}^{\text{HVP}}$



#### HVP from $e^+e^- \rightarrow \text{had}$ (or $\tau \rightarrow \nu_{\tau} + \text{had}$ )



Use [Bouchiat et al 61] optical theorem (unitarity)



$$\operatorname{Im}\Pi(s) = -\frac{R(s)}{12\pi}, \quad R(s) \equiv \frac{\sigma(e^+e^- \to \text{had})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

and a once subtracted dispersion relation (analyticity)

$$\begin{split} \hat{\Pi}(Q^2) &= \int_0^\infty ds \, \frac{Q^2}{s(s+Q^2)} \frac{1}{\pi} \, \mathrm{Im} \Pi(s) \\ &= \frac{Q^2}{12\pi^2} \int_0^\infty ds \, \frac{1}{s(s+Q^2)} R(s) \end{split}$$

 $\Rightarrow \hat{\Pi}(Q^2)~\&~a_\mu^{\rm LO-HVP}$  from data: sum of exclusive  $\pi^+\pi^-$  etc. channels from CMD-2&3, SND, BES, KLOE '08,'10&'12, BABAR '09, etc.

$$a_{\mu}^{\text{LO-HVP}} = 694.0(1.0)(3.9) \times 10^{-10} \text{ [0.6\%]}$$
 [DHMZ'19] (sys. domin.)

Can also use  $I(J^{PC}) = 1(1^{--})$  part of  $\tau \to \nu_{\tau} + \text{had}$  and isospin symmetry + corrections

# Standard model prediction and comparison to experiment

# SM prediction vs experiment on April 7, 2021 (v1)

| SM contribution         | $a_{\mu}^{\mathrm{contrib.}} 	imes 10^{10}$ | Ref.                    |  |
|-------------------------|---------------------------------------------|-------------------------|--|
| HVP LO (R-ratio)        | $692.8 \pm 2.4$                             | [KNT '19]               |  |
|                         | $694.0 \pm 4.0$                             | [DHMZ '19]              |  |
|                         | $692.3 \pm 3.3$                             | [CHHKS '19]             |  |
| HVP LO (R-ratio, avg)   | $693.1 \pm 4.0$                             | [WP '20]                |  |
| HVP LO (lattice<2021)   | $711.6 \pm 18.4$                            | [WP '20]                |  |
| HVP NLO                 | $-9.83 \pm 0.07$                            |                         |  |
|                         | [Kurz et al '14, Jegerlehner '16, WP '20]   |                         |  |
| HVP NNLO                | $1.24 \pm 0.01$                             | [Kurz '14, Jeger. '16]  |  |
| HLbyL LO (pheno)        | $9.2 \pm 1.9$                               | [WP '20]                |  |
| HLbyL LO (lattice<2021) | $7.8 \pm 3.1 \pm 1.8$                       | [RBC '19]               |  |
| HLbyL LO (lattice 2021) | $10.7 \pm 1.1 \pm 0.9$                      | [Mainz '21]             |  |
| HLbyL LO (avg)          | $9.0 \pm 1.7$                               | [WP '20]                |  |
| HLbyL NLO (pheno)       | $0.2 \pm 0.1$                               | [WP '20]                |  |
| QED [5 loops]           | $11658471.8931 \pm 0.0104$                  | [Aoyama '19, WP '20]    |  |
| EW [2 loops]            | $15.36 \pm 0.10$                            | [Gnendiger '15, WP '20] |  |
| HVP Tot. (R-ratio)      | $684.5 \pm 4.0$                             | [WP '20]                |  |
| HLbL Tot.               | $9.2 \pm 1.8$                               | [WP '20]                |  |
| SM [0.37 ppm]           | $11659181.0 \pm 4.3$                        | [WP '20]                |  |
| Exp [0.35 ppm]          | $11659206.1 \pm 4.1$                        | [BNL '06 + FNAL '21]    |  |
| Exp - SM                | $25.1 \pm 5.9  [4.2\sigma]$                 |                         |  |

# SM prediction vs experiment on April 7, 2021 (v2)

| SM contribution           | $a_{\mu}^{ m contrib.} 	imes 10^{10}$     | Ref.                    |
|---------------------------|-------------------------------------------|-------------------------|
| HVP LO (R-ratio)          | $692.8 \pm 2.4$                           | [KNT '19]               |
|                           | $694.0 \pm 4.0$                           | [DHMZ '19]              |
|                           | $692.3 \pm 3.3$                           | [CHHKS '19]             |
| HVP LO (R-ratio, avg)     | $693.1 \pm 4.0$                           | [WP '20]                |
| HVP LO (lattice)          | $707.5 \pm 5.5$                           | [BMWc '20]              |
| HVP NLO                   | $-9.83 \pm 0.07$                          |                         |
|                           | [Kurz et al '14, Jegerlehner '16, WP '20] |                         |
| HVP NNLO                  | $1.24 \pm 0.01$                           | [Kurz '14, Jeger. '16]  |
| HLbyL LO (pheno)          | $9.2 \pm 1.9$                             | [WP '20]                |
| HLbyL LO (lattice<2021)   | $7.8 \pm 3.1 \pm 1.8$                     | [RBC '19]               |
| HLbyL LO (lattice 2021)   | $10.7 \pm 1.1 \pm 0.9$                    | [Mainz '21]             |
| HLbyL LO (avg)            | $9.0 \pm 1.7$                             | [WP '20]                |
| HLbyL NLO (pheno)         | $0.2 \pm 0.1$                             | [WP '20]                |
| QED [5 loops]             | $11658471.8931 \pm 0.0104$                | [Aoyama '19, WP '20]    |
| EW [2 loops]              | $15.36 \pm 0.10$                          | [Gnendiger '15, WP '20] |
| HVP Tot. (lat. + R-ratio) | $698.9 \pm 5.5$                           | [WP '20, BMWc '20]      |
| HLbL Tot.                 | $9.2 \pm 1.8$                             | [WP '20]                |
| SM [0.49 ppm]             | 11659195.4 $\pm$ 5.7                      | [WP '20 + BMWc '20]     |
| Exp [0.35 ppm]            | $11659206.1 \pm 4.1$                      | [BNL '06 + FNAL '21]    |
| Exp - SM                  | $10.7 \pm 7.0 \ [1.5\sigma]$              |                         |



## What is lattice QCD (LQCD)?

To describe matter w/ sub-% precision, QCD requires  $\geq$  104 numbers at every spacetime point

- $\rightarrow \infty$  number of numbers in our continuous spacetime
- → must temporarily "simplify" the theory to be able to calculate (regularization)
- ⇒ Lattice gauge theory mathematically sound definition of NP QCD:
  - UV (& IR) cutoff → well defined path integral in Euclidean spacetime:

$$\begin{array}{lcl} \langle \textit{O} \rangle & = & \int \mathcal{D} \textit{U} \mathcal{D} \bar{\psi} \mathcal{D} \psi \; e^{-S_G - \int \bar{\psi} \textit{D}[\textit{M}] \psi} \; \textit{O}[\textit{U}, \psi, \bar{\psi}] \\ \\ & = & \int \mathcal{D} \textit{U} \; e^{-S_G} \; \text{det}(\textit{D}[\textit{M}]) \; \textit{O}[\textit{U}]_{\text{Wick}} \end{array}$$

•  $\mathcal{D} \textit{Ue}^{-S_G} \det(\textit{D[M]}) \geq 0$  & finite # of dofs  $\rightarrow$  evaluate numerically using stochastic methods



LQCD is QCD when  $m_q o m_q^{
m ph}, \, a o 0$  (after renormalization),  $L o \infty$  (and stats  $o \infty$ )

HUGE conceptual and numerical ( $O(10^9)$  dofs) challenge

#### Our "accelerators"

#### Such computations require some of the world's most powerful supercomputers







- 1 year on supercomputer
   100 000 years on laptop
- In Germany, those of the Forschungszentrum Jülich, the Leibniz Supercomputing Centre (Munich), and the High Performance Computing Center (Stuttgart); in France, Turing and Jean Zay at the Institute for Development and Resources in Intensive Scientific Computing (IDRIS) of the CNRS, and Joliot-Curie at the Very Large Computing Centre (TGCC) of the CEA, by way of the French Large-scale Computing Infrastructure (GENCI).

# Lattice QCD calculation of $a_{\mu}^{\text{HVP}}$



All quantities related to  $a_{\mu}$  will be given in units of  $10^{-10}$ 

#### HVP from LQCD: introduction

Consider in Euclidean spacetime, i.e. spacelike  $q^2 = -Q^2 \le 0$  [Blum '02]

$$\begin{array}{lll} \Pi_{\mu\nu}(Q) & = & \gamma \displaystyle \bigwedge^{q} \displaystyle \bigwedge^{q} \gamma \\ \\ & = & \int d^{4}x \, e^{jQ\cdot x} \langle J_{\mu}(x)J_{\nu}(0) \rangle \\ \\ & = & \left( Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^{2} \right) \Pi(Q^{2}) \end{array}$$

$$\mathsf{W}/\mathsf{J}_{\mu} = \tfrac{2}{3}\bar{\mathsf{u}}\gamma_{\mu}\mathsf{u} - \tfrac{1}{3}\bar{\mathsf{d}}\gamma_{\mu}\mathsf{d} - \tfrac{1}{3}\bar{\mathsf{s}}\gamma_{\mu}\mathsf{s} + \tfrac{2}{3}\bar{\mathsf{c}}\gamma_{\mu}\mathsf{c} + \cdots$$

Then [Lautrup et al '69, Blum '02]

$$a_\ell^{\text{LO-HVP}} = \alpha^2 \int_0^\infty \frac{dQ^2}{m_\ell^2} \, k(Q^2/m_\ell^2) \hat{\Pi}(Q^2)$$
 w/  $\hat{\Pi}(Q^2) \equiv \left[\Pi(Q^2) - \Pi(0)\right]$ 

FV &  $a \neq 0$ : discrete momenta,  $\Pi_{\mu\nu}(0) \neq 0$  &  $\Pi(0) \sim \ln a$   $\rightarrow$  modify Fourier transform to take care of all three problems and eliminate some noise [Bernecker et al '11, BMWc '13, Feng et al '13, Lehner '14, ...]

Contributions of ud, s, c... have very different systematics (and statistical errors) on lattice

→ study each one individually



## Key improvements: statistical noise reduction



Statistical noise of up and down quark contributions increases exponentially w/ spacetime size of HVP "bubble"



## Key improvements: statistical noise reduction



Statistical noise of up and down quark contributions increases exponentially w/ spacetime size of HVP "bubble"

#### Solve w/:

- Algorithmic improvements (EigCG, solver truncation [Bali et al '09], all mode averaging [Blum et al '13]) to generate
  more statistics: > 25,000 gauge configurations & tens of millions of measurements
- Exact treatment of long-distance modes to reduce long-distance noise (low mode averaging [Neff et al '01, Giusti et al '04, ...])
- Rigorous upper/lower bounds on long-distance contribution [Lehner '16, BMWc '17]

## Key improvements: statistical noise reduction



Statistical noise of up and down quark contributions increases exponentially w/ spacetime size of HVP "bubble"



## Key improvements: tuning of QCD parameters



Must tune parameters of QCD very precisely:  $m_u$ ,  $m_d$ ,  $m_s$ ,  $m_c$  & overall mass scale

#### Solve w/:

- Permil determination of overall QCD scale
- Set w/ Ω<sup>−</sup> baryon mass computed w/ 0.2% uncertainty
- Use Wilson flow scale [Lüscher '10, BMWc '12] to separate out electromagnetic corrections

# Key improvements: remove finite spacetime distortions



Even on "large" lattices ( $L \gtrsim 6$  fm,  $T \gtrsim 9$  fm), early pen-and-paper estimate [Aubin et al "16] suggested that exponentially suppressed finite-volume distortions are still O(2%)

#### Solve by:

 Finding a way to perform dedicated supercomputer simulations to calculate effect between above and much larger L = T = 11 fm volume directly in QCD, i.e. "big" – "ref"









 Computing remnant ~ 0.1% effect in "big" volume w/ simplified models of QCD that correctly predict "big" – "ref"

# Key improvements: controlled continuum limit



Our world corresponds to spacetime w/ lattice spacing  $a \rightarrow 0$ 





















Our world corresponds to spacetime w/ lattice spacing  $a \rightarrow 0$ 

#### Control $a \rightarrow 0$ extrapolation of results by:

- Performing all calculations on lattices w/ 6
  values of a in range 0.134 fm → 0.064 fm
- Reducing statistical error at smallest a from 1.9% to 0.3%!
- Improving approach to continuum limit w/ simplified models for QCD [Sakurai 60, Bijnens et al '99, Jegerlehner et al '11, Chakraborty et al '17, BMWc '20] Shown to reproduce distortions observed at a>0
- Extrapolate results to a=0 using theory as guide



## Key improvements: QED and $m_u \neq m_d$ corrections



For subpercent accuracy, must include small effects from electromagnetism and due to fact that masses of *u* and *d* quarks are not quite equal

- Effects are proportional to powers of  $lpha=rac{e^2}{4\pi}\sim 0.01$  and  $rac{m_d-m_u}{(M_p/3)}\sim 0.01$
- $\Rightarrow$  for SM calculation at permil accuracy sufficient to take into account contributions proportional to only first power of α or  $\frac{m_d m_u}{(M_D/3)}$
- We include all such contributions for all calculated quantities needed in calculation

### Robust determination of uncertainties



Thorough and robust determination of statistical and systematic uncertainties

- Stat. err.: resampling methods
- Syst. err.: extended frequentist approach [BMWc '08, '14]
  - Hundreds of thousands of different analyses of correlation functions
  - Weighted by AIC weight
  - Use median of distribution for central values & 16 ÷ 84% confidence interval to get total error

(Nature paper has 95 pp. Supplementary information detailing methods)

## Summary of contributions to $a_{\mu}^{ extsf{LO-HVP}}$



# Comparison and outlook

## Comparison



- Consistent with other lattice results
- Total uncertainty is divided by 3 ÷ 4 ...
- ... and comparable to R-ratio and experiment
- Consistent w/ experiment @  $1.5\sigma$  ("no new physics" scenario)!
- 2.1σ larger than R-ratio average value [WP '20]

## Fermilab plot, April 7 2021, BMWc version



#### What next?

- HLbL error must be reduced by factor of 1.5 ÷ 2
- Must reduce ours by factor of 4!
- · And must reduce proportion of systematics in theory error
- Will experiment still agree with our prediction ?
- Must be confirmed by other lattice groups
- . If confirmed, must understand why lattice doesn't agree with R-ratio
- If disagreement can be fixed, combine LQCD and phenomenology to improve overall uncertainty [RBC/UKQCD '18]
- Important to pursue e<sup>+</sup>e<sup>-</sup> → hadrons measurements [BaBar, CMD-3, BES III, Belle II, . . .]
- μe → μe experiment MUonE very important for experimental crosscheck and complementarity w/ LQCD
- Important to build J-PARC  $g_{\mu}$  2 and pursue  $a_{e}$  experiments





