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It began with Dirac ... (%%
® Two fundamental papers:

® “The quantum theory of the electron” (1928)

The Dirac equation: (iy,0" — m)y = 0 predicts that the electron’s
magnetic moment g = 2

“That was really an unexpected bonus for me, completely unexpected”

® “The Quantum Theory of the Emission and Absorption of
Radiation” (1927)

The basis for QED (and all of quantum field theory) enables the
calculations of the anomaly: g # 2



~ (2) Observations have been made of the electric fields and field changes
- associated with 18 distant and 5 near thunderstorms. The sudden changes of
field due to distant lightning discharges (> 8km.) were predominantly negative
~ in sign, those due to near discharges (<6 km.) predominantly positive. The
relative frequencies of positive and negative changes were 1:5 in the former
case and 4-3 : 1 in the latter. The steady electric fields below the 5 near storms
were all strongly negative.
~ (3) It is shown that these results indicate that the thunderclouds were
= bi-polar in nature and that the polarity was generally, if not always, positive,
Kthe upper pole being positive and the lower pole negative. It is doubtful if
‘Eany active storms of opposite polarity were observed at all.
< (4) The electric moments of the charges removed by 82 lightning discharges
“have been measured. The mean value is 94 coulomb-kilometres.

The Quantwm Theory of the Emission and Absorption of
Radiation.
By P. A. M. Dirac, St. John’s College, Cambridge, and Institute for
Theoretical Physics, Copenhagen.

(Communicated by N. Bohr, For. Mem. R.S.—Received February 2, 1927.)

§ 1. Introduction and Swnmary.

g The new quantum theory, based on the assumption that the dynamical
& variables do not obey the commutative law of multiplication, has by now been
' developed sufficiently to form a fairly complete theory of dynamies. One can

§ treat mathematically the problem of any dynamical system composed of a
'E number of particles with instantaneous forces acting between them, provided it
© is describable by a Hamiltonian function, and one can interpret the mathematics
phyncally bya qmte definite general method. On the other hand, hardly
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... and then
Schwinger

® First calculation of leading-
order contributionto g — 2
in QED: 2;’; (1947)

® Inscribed on his tombstone
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On Quantum-Electrodynamics and the
Magnetic Moment of the Electron

JULIAN SCHWINGER
Harvard University, Cambridge, Massachusells
December 30, 1947

TTEMPTS to evaluate radiative corrections to elec-
tron phenomena have heretofore been beset by di-
vergence difficulties, attributable to self-energy and
vacuum polarization effects. Electrodynamics unquestion-
ably requires revision at ultra-relativistic energies, but is
presumably accurate at moderate relativistic energies. It
would be desirable, therefore, to isolate those aspects of the
current theory that essentially involve high energies, and
are subject to modification by a more satisfactory theory,
from aspects that involve only moderate energies and are
thus relatively trustworthy. This goal has been achieved by
transforming the Hamiltonian of current hole theory elec-
trodynamics to exhibit explicitly the logarithmically di-
vergent self-energy of a free electron, which arises from

the virtual emission and absorption of light quanta. The
electromagnetic self-energy of a free electron can be
ascribed to an electromagnetic mass, which must be added
to the mechanical mass of the electron. Indeed, the only
meaningful statements of the theory involve this combina-
tion of masses, which is the experimental mass of a free
electron. It might appear, from this point of view, that
the divergence of the electromagnetic mass is unobjection-
able, since the individual contributions to the experimental
mass are unobservable. However, the transformation of the
Hamiltonian is based on the assumption of a weak inter-
action between matter and radiation, which requires that
the electromagnetic mass be a small correction (~(e*/Ac)ms)
to the mechanical mass m.

The new Hamiltonian is superior to the original one in
essentially three ways: it involves the experimental elec-
tron mass, rather than the unobservable mechanical mass;
an electron now interacts with the radiation field only in
the presence of an external field, that is, only an accelerated
electron can emit or absorb a light quantum;* the inter-
action energy of an electron with an external field is now
subject to a finite radiative correction. In connection with
the last point, it is important to note that the inclusion of
the electromagnetic mass with the mechanical mass does
not avoid all divergences; the polarization of the vacuum
produces a logarithmically divergent term proportional to
the interaction energy of the electron in an external field.
However, it has long been recognized that such a term is
equivalent to altering the value of the electron charge by a
constant factor, only the final value being properly identi-
fied with the experimental charge. Thus the interaction
between matter and radiation produces a renormalization
of the electron charge and mass, all divergences being
contained in the renormalization factors.

The simplest example of a radiative correction is that
for the energy of an electron in an external magnetic field.
The detailed application of the theory shows that the
radiative correction to the magnetic interaction energy
corresponds to an additional magnetic moment associated
with the electron spin, of magnitude &u/u= (}r)e?/he
=0.001162. It is indeed gratifying that recently acquired
experimental data confirm this prediction. Measurements
on the hyperfine splitting of the ground states of atomic
hydrogen and deuterium! have yielded values that are
definitely larger than those to be expected from the directly
measured nuclear moments and an electron moment of one
Bohr magneton. These discrepancies can be accounted for
by a small additional electron spin magnetic moment.?
Recalling that the nuclear moments have been calibrated
in terms of the electron moment, we find the additional
moment necessary to account for the measured hydrogen
and deuterium hyperfine structures to be &u/u=0.00126
+0.00019 and 8u/p=0.001310.00025, respectively. These
values are not in disagreement with the theoretical predic-
tion. More precise conformation is provided by measure-
ment of the g values for the S;, P}, and *Py; states of
sodium and gallium.? To account for these results, it is
necessary to ascribe the following additional spin magnetic
moment to the electron, &u/u=0.00118-+0.00003.
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® Co-inventor (with Stueckelberg) of the renormalisation group

® First to submit a paper proposing quarks ( a few days before Gell-Mann
and Zweig), not widely known because written in French, and publication
delayed > year!
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PROPRIETES DE I’ETRANGETE ET UNE FORMULE DE MASSE
POUR LES MESONS VECTORIELS

A. PETERMANN
CERN, Genéve 23

Regu le 30 décembre 1963

Abstract: A mass-formula for vector mesons is proposed, and the role of strangeness in mass-
formulae discussed.

(8, —2)

e Pioneerofg, — 2 calculations: a,=—F5— = 1+ 2% + 0.75(%)2 (1957)

e First correct calculation of O(ar?) contributions to 8. —2,8,—2

(also Sommerfeld; Suura & Wichmann, previous work by Karplus & Kroll)



Fourth order magnetic moment of the electron

by A. Petermann.
CERN. Theoretical Study Division. Institute for theoretical Physics. Copenhagen.
(17. VIIL. 1957.)

In connection with the upper and lower bounds analysis done by
the author?), which indicated a clear discrepancy with the Karplus
and Kroll’s result for the 4th order magnetic moment?), we have
performed an analytic evaluation of the five independent diagrams
contributing to this moment in fourth order*). The results are
the following:

b o=ttt 38— s at Log2) = — 0467 . (1)
p, == (35 + o) = 0.718 . @)
iy, =5 (— 35 + 5 — 3 68) + 3 2? Log 2 — 5 Log -z
~0.564 %5 — 5 2 Log 2. @)
pry = (35 — 5 + 3 Log 25) == 0090 S+ 1 X Log 2y (4)
tn, == (35 — 5) =0.016 5. (5)
o= (4 2+ 2 2(3) — 2" Log2) =—0.828 2 ®)

Compared with the values given in their original paper by Kag-
pLus and KRrowLL, one can see that two terms were in error: u
differs by

=0. 0‘31

n’ 3"
32 61 17 109
#y1, by ;,(3 g #* 1 2::’1.0;;"——"(3))—"611—,
The three other terms check. The error in g; remained of course un-
detected in the upper and lower bound analysis owing to its small-

*) The termmology of ref. 2 is used throughout this paper.

408 A. Petermann. H.P.A-

ness. But the large discrepancy in pup, wes that pin-pointed out in
the previous paper.

A summary of the most important electromagnetic observables,
the theoretical values of which are modified by the new value of the
magnetic moment, is now given

Moment of the electron: —‘; = 1.0011596 = 1 + T —0.328 —;—: 1

Frankex and Lieses’ value forit: u,/u, = 1.001167 4 0.000005%).
g-factor of the u-meson (electromagnetic):

2 (1.0011654) = 2 (1 + 5= + 0.75 %).

Last Lederman’s value: 2 (1.0021 -+ 0.0008) *).
22 S,p — 22 P, (Hydrogen): (1057.94 4 0.15) Mc/s; observed:
(1057-77 4+ 0.10) Me/s.
22 S,s — 22 P,j;5 (Deuterium): (1059.22 4 0.15) Mc/s; observed:
(1059.00 + 0.10) Mc/s.
Fine structure constant: 1/a = 137.0384; (previously: 137.0365).
The new fourth order correction given here is in agreement with:
a) The upper and lower bounds given by the author?).
b) A calculation using a different method, performed by C. Som-
MERFIELD3).
c¢) A recalculation done by N. M. Krorr and collaborators*).

The author thanks Prof. NieLs Bour for the hospitality at the
Institute.
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seems justifiable to assume that the transition to the
B ground state is allowed in the usual sense.

The next question is that of transitions to excited,
bound states of B* in the u-capture process. The fact
that only 13%, of all absorptions lead to bound states
of B implies that high excitations are favored. Appreci-
able formation of excited states would wash out the
orientation in the ground state because of the smearing
over magnetic quantum numbers that occurs in the
process of de-excitation by y-ray emission. Fortunately,
the situation here seems favorable. There are only four
known excited states below the threshold for particle
emission.” While no firm arguments can be made, what is
known of the spins and parities of these states makes
it seem probable that the large majority of u-capture
events leading to bound states of BY actually go
directly to the ground state.

Another effect which must be considered is possible
depolarization of the B nucleus due to hyperfine inter-
action with the atomic electrons. Rough estimates
indicate that the atom is probably ionized due to
recoil at the instant of absorption of the u meson. If the
atom is always ionized and then re-forms again after
it stops, we can calculate the depolarization under the
assumption that the fine-structure substates are popu-
lated statistically. This gives, for the resultant B®
polarization,

(3)=3(0.54)(0)=0.36(c). )

Thus, if |{o)| equals 15%, the final polarization |(J)|
of the B® is probably closer to 5%, than to the value of
109%, given above.

There is an additional depolarization due to the
environment in which the B atom finds itself. But the
relaxation time for this effect in graphite is presumably
longer than the mean life of B since metals show
relaxation times of the order of tens of milliseconds.
In any event, such solid-state effects can be essentially
eliminated by a suitable choice of organic material as
target.

* This work was supported, in part, by the Office of Naval
Research and the U. S. Atomic Energy Commission.

t Visiting Guggenheim Fellow, on leave of absence from McGill
Unlvcxsnty, Montreal, Canada.

'T. D. Lee and R. P. Feynman, Proceedings of the Seventh
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2R. L. Garwin, L. Lederman, and co-workers at Columbia have
observed the longitudinal polarization of the electrons in u decay

(L. Lederman, in reference 1) On the basis of a theory of x4 decay

the direction of the u meson’s polarization can then be inferred.

‘;Iv(ul 9?;1)1!)1:1’, Hayward, Hoppes, and Hudson, Phys. Rev. 105,
141

¢ Garwin, Lederman, and Weinrich, Phys. Rev. 105, 1415
(1957)
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(unpubhshed)

8J and J’ are the final and initial nuclea.r spms rﬁtpcctlvely,
whileAssisa ical factor defined in th
Treiman, and Wyld, Phys. Rev. 106, 517 (195"75 For a transition
with AJ=0, the polarization of the daughter nucleus is of the
form of Eq. (1) with the factor Ay replaced by N/(1+b), the
coefficients &V and b being given in the above reference (with
E.=m, and the sign appropriate for electrons).

Godfrey, Princeton University thesis, 1954
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7T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).

8 Since the larger fraction of 4 mesons bound in carbon decay
before nuclear capture, the directional asymmetry of the prompt
electrons can be used to measure the magnitude of (@) direct f’
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Magnetic Dipole Moment of the Electron

CHARLES M. SOMMERFIELD*

Harvard University, Cambridge, M assachusells
(Received May 6, 1957)

HE fourth-order radiative corrections to the
magnetic dipole moment of the electron were
calculated by Karplus and Kroll in 1949.! Their result
is contained in the complete expression for the moment,

pe/po=1+4(a/2m) —2.973(c*/7*) =1.0011454, (1)

where pq is the Bohr magneton.

The calculation has been redone in the present in-
stance using the mass-operator formalism of Schwinger.?
We consider a single electron moving in a constant
(in space and time) electromagnetic field. The expecta-
tion value of the mass operator in the lowest state
represents the self or proper energy of the electron. The
magnetic moment is identified from that part of the
self-energy which is linear in the external field.

The electron Green’s function G, the photon Green’s
function G, and the interaction operator T, which
appear in the symbolic expression for the mass operator,

M=m+ie TryGI'G,

are computed in the presence of (as functions of) the
external field. To do this it is sufficient to replace the
electron’s momentum operator, p, where it occurs, by
by the combination II=p—ed, provided that full
account is taken of the commutation properties of II.
Units are such that #=c=1. Renormalized quantities
are used throughout the perturbation calculation.

The fourth-order contribution to the moment is
found to be

TR at’(19
po

@
144+12+§;(3) n? ln2) =—0. 328;; )

where {(3) is the Riemann zeta function of 3. Thus
e/ 1o=1.0011596.

The discrepancy between (1) and (2) has been
traced to the term u'+u'e of Karplus and Kroll. In
other words, terms u'¢ and p'**+- 44 appear unchanged
in the new result. A further point-by-point comparison
of the two answers is not readily accomplished because
the grouping of the terms differs markedly in the two
cases. The present calculation has been checked several
times and all of the auxiliary integrals have been done
in at least two different ways.

LETTERS TO

The theoretical magnetic moment may be compared
with the experimental moment; it is also used in
determining the fine-structure constant a; and it con-
tributes to the Lamb shift. The magnetic moment is
measured by determining p./p, and pp/po, where p, is
the proton moment. The measurements of p./u, have
been quite accurate.? On the other hand, there are two
conflicting experimental determinations®s of p,/po,
which result in two different values for the magnetic
moment:

References e/ Mo
3and 4 1.001146-0.000012
3and 5§ 1.001165+:0.000011.

The theoretical value® for the hyperfine splitting in
hydrogen is proportional to the quantity

@ (up/o) (ne/po) = (up/me) (me/po)*.

Since there is agreement on the experimental value of
up/ie, we use the second form, together with the
present value of @, to determine a new value. This
turns out to be

1/a=137.039.

The theoretical Lamb shifts in hydrogen, deuterium,
and singly ionized helium are affected by the changes
in both « and g.. Incorporating these changes into the
calculations of Salpeter,® along with the proton-recoil
recoil corrections of Fulton and Martin,? and the proton-
structure corrections of Aron and Zuchelli,” we obtain
the following results in Mc/sec:

‘Theoretical Experimental Reference
Su 1057.99+0.13 1057.774 0.10 11
Sp 1059.23+0.13 1059.00=+ 0.10 11
Sp—Su 1.24::0.04 1.23+ 0.15 11
Ste 140559 +2.1 14043 =130 12

The experimental values':'* have been listed for
comparison. There remain several uncomputed theoreti-
cal effects which are expected to be of the same order
of magnitude as the indicated theoretical uncertainties.

The magnetic moment of the x meson, as computed
by Suura and Wichmann, and Petermann,”® would be
changed to read

o\ eh
(1 +—0. 75—- —
L 2m,.c

I would like to thank Professor J. Schwinger, Pro-
fessor P. C. Martin, Professor E. M. Purcell, and
Professor R. J. Glauber, and Dr. K. A. Johnson for
their helpful comments and discussion related to this
work.

Note added in proof —Petermann' has placed upper
and lower bounds on the separate terms of Karplus
and Kroll. He finds that their value for ullc does
not lie within the appropriate bounds. Assuming the
other terms to be correct, he concludes that uf/uo
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Allowed Capture-Positron Branching Ratios
P. F. ZWEIFEL

Knolls Atomic Power Laboratory,* Schenectady, New York
(Received April 18, 1957)

N a previous paper,! tables of allowed K capture-
positron branching ratios were presented. However,
it was pointed out by Wapstra® and Perlman® that
numerical errors existed in the table. These errors
appear in the first, third, and fifth columns of Table IT
of reference 1, each entry of which should be multiplied
by the factors of 0.5018, 1.2244, and 0.6462, respec-
tively. In Table I of this communication, the corrected
table of allowed K to positron branching ratios is
given. In this work, the effect of the finite nuclear size
on the bound electron wave functions, which was
ignored in reference 1, was taken into account.* This
effect, which is negligible for low Z, reduces the branch-
ing ratio by about 109, for Z=84 and by about 15%,
for Z=92. Effects of finite size on the positron wave
functions was ignored, since it is a considerably smaller
effect.®
As in reference 1, the bound electron wave functions
were taken from Reitz’s thesis® except for Z=16, for

TasrLe I. Allowed K to positron branching ratios.

Wo/me\Z 16 29 49 84 92
128 46.6 70 1.208X10¢ 4.56)([0‘ X1
A4 8.65 11 1.58X10° 8A41X10¢
.60 2.83 33 425 03)(]0' 1.84X10¢
.76 1.24 1 164 L57X100  5.01X10°
.92 0.641 91 776 S7X108 87X
.08 0373 91 423 807 1.36X10%
.40 0.190 164 289 47
.88 0.0613 597 90.4 158
.84 0.0169 151 26 390
.80 7.00X107 0. .10 15.7
.76 3.56X1073 . 0302 82 8.
.72 X107 .0188 0.173 475
.68 1.30X107 .0118 0.109 .80 3.06
.64 8.85X10~¢ 93X102 00729 2.10
.60 X1 60X107  0.0513 879 1
10.56 448X10¢ 00X107*  0.0377 . 1.13
11.52 3.37X10¢ .07X10°%  0.0281 408 0.869
12.48 2.60X10¢ .37X107 0.0219 .303 0.685




Lederman et al.:
First Measurement of g, — 2
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Magnetic Moment of the Free Muon*}

T. CorriN, R. L. Garwin,} S. PENMAN, L. M. LEDERMAN, AND A. M. Sacus
Columbia University,§ New York, New York

(Received October 1, 1957)

The magnetic moment of the positive u meson has been measured in several target materials by a magnetic
resonance technique. Muons were brought to rest with their spins parallel to a magnetic field. A radio-
frequency pulse was applied to effect a spin reorientation which was detected by counting the decay elec-
trons emerging after the pulse in a fixed direction. Results are expressed in terms of a g factor which for a
spin § particle is the ratio of the actual moment to eh/2myc. The most accurate result obtained in a CHBr,
target, is that g=2(1.0026=:0.0009) compared to the theoretical prediction of g=2(1.0012). Less accurate
measurements yielded g=2.00524:0.005 in a copper target and g=2.0040.01 in a lead target.

I. INTRODUCTION

HE x meson has often been described as one of the
more baffling of elementary particles. It alone,
among the unstable particles, has no strong interaction.
Aside from its usefulness as a tool in the study of nuclear
structure and the details of parity violation in weak
interactions it appears to play no essential role in any
organization of fundamental particles. A precise meas-
urement of the magnetic moment of the muon offers
some promise for clarification of this situation.
The Dirac equation predicts precisely 2 for the
g value of a spin # particle. Including corrections due
to the interaction of the particle with its radiation
field, one obtains'?

@ o?
g,.=2(1+—+0.75—+---) (1)
2r e

=2(1.0012).

an energy A would alter the g value as follows

S ) R

It might be remarked* that the model used in reference
3 implies a modification in the scattering of one Dirac
particle by another. Such a modification can be de-
scribed by a mean square radius, the appropriate rela-
tion being (r*),=6(h/\c)®. Qualitatively, at least, the
measured proton radius should constitute an upper
limit for such an “electrodynamic radius.” Hence the
fractional alteration of the muon moment from such a
presumed breakdown of quantum electrodynamics
should not exceed ~0.02(a/27).

® Columbia Nevis and Carnegie Institute of Technology cyclotrons

® Agreement between theory and experiment



First g, — 2 Experiment at CERN
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Experimental Principle of
Storage Ring Experiments

LIFE OF A MUON:

THE g-2 EXPERIMENT Muons are fed
Muons are into a uniform,
tiny magnets doughnut-shaped
spinning on magnetic field ]
axis like tops. and travel in acircle. ~ After each circle,
muon's spin axis
\)J * / / changes by 12°,

— . yet it keeps on traveling
‘ D "\7 < * == T R in the same direction.
Hit 97, 1% I
Target. g

Protons Pions, weighing Pions decay
1/6 proton, to muons.
are created.

detectors : SR v .. D
see an electron, giving After circling the ring
the muon spin direction; many times, muons
g-2 is this angle, divided spontaneously decay to
by the magnetic field the electron, (plus neutrinos,)
muon is traveling through in the direction of the muon spin.

in the ring.



First Storage Ring Experiment at CERN

(1962 - 1968)

Design Under construction

oa = = 270 ppm

Agreement with theory after inclusion of light-by-light scattering
(Aldins, Kinoshita, Brodsky, Dufner)
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O(<)? Calculations
T

(Kinoshita, 967) (LaQtrup, 1968)

(+ De Rafael)

NS =AW N =

AV (m,m,) = glog2 x— ({(3) - %7{2 log?2 + 79i2 + %)logx + %
S TS SO <y
e B 1)
+x* [% log® x + (%2 - 13—0)1082 X+ (% +4{(Q3) - 329”2 + 1g4)logx
O R LA L S P z] +0)

= 22.868 379 98(20),



@(%)4 Calculations

(Kinoshita) (Lautrup, 1972)

@w@@@@%

I(a) I(b) I(c) I(d) II(a) II(b) II(c)
IV(a) IV(b) IV (c) IV(d) VvV

A (my/m,) = 123.785 51(44) + 8.8997(59) = 132.6852(60)



Second Storage Ring Experiment at CERN

(1969 - 1976)
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e 2 in
Supersymmetry

® One-loop contribution from
smuon/neutralino loop

A(g — 2) = —ab(cos « sin a/41r2)(m /m )
X {1/(1 —n,) +2n,/(1 — n, )2
+[2n,/(1 —1,)°] IOénl — (@ 1y

® where 7n; =m2 [m)

Volume 116B, number 4

PHYSICS LETTERS

(1982)

SPIN-ZERO LEPTONS AND THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

John ELLIS, John HAGELIN and D.V. NANOPOULOS

CERN, Geneva, Switzerland

Received 14 June 1982

The anomalous magnetic moment of the muon (g — 2),, imposes constraints on the masses and mixing of spin-zero lep-
tons (sleptons). We develop the predictions of models of spontaneous supersymmetry breaking for the slepton mass matrix,
and show that they are comfortably consistent with the (g — 2),, constraints.

During the present resurgence of interest in super-
symmetry broken at low energies [1] new significance
is attached to the classical phenomenological play-
grounds of gauge theories such as the anomalous mag-
netic moments of the electron and muon [2], flavour-
changing neutral interactions [3;-5] parity [6] and
CP violation [7,8] in the strong interactions. The three
latter phenomena make life rather difficult [3,7] for
the most general form of soft supersymmetry breaking,
whereas simple models [9—11] of spontaneously bro-
ken supersymmetry naturally [3,4 7] respect the AF
#0, P and CP violation constraints. As for the anoma-
lous magnetic moments of the leptons, it has long been
known that they vanish in an exactly supersymmetric
theory [12], and Fayet [2] showed that in his model

of supersymmetry breaking (g — 2)” would be compat-

ible with experiment if the spin-zero muon (smuon)
masses were heavier than 15 GeV. Direct experimental
searches [13] now exclude the existence of lighter
smuons. Fayet’s analysis [2] was in the context of a
model with a very light photino ¥ (see fig. 1a), and
Grifols and Méndez [14] have recently made the inter-

' esting observation that his analysis is significantly al-

® and L=qa 2su£ILG +b\/§tuﬁRG

tered for massive gauginos (see figs. 1b, 1c). They
show that there are potentially nontrivial constraints
on the smuon masses in models of broken supersym-
metry.
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Fig. 1. One-loop diagrams contributing to (g — 2)y: (a) essen-
tially massless photmo ('y) exchange, (b) ¥ and sneutrino (sv)
exchange, and (c) BorZe exchange.

right transition operator there is a GIM [15] -like can-
cellation between the smuon mass eigenstates in fig. 1c¢
which provides a potential suppression mechanism. We
analyze recent models [10,11] of spontaneous super-
symmetry breaking originating in the D and F sectors,
respectively. We show that in the former case (g 2),
is suppressed by near degeneracy between the smuon
mass eigenstates, while in the latter case (g — 2),, is
suppressed by small mixing angles between the left-
and right-handed smuons. We close with some remarks
about (g — 2), and about parity violation in the strong
interactions.

When they examined figs. 1a, 1b and 1c¢, Grifols
and Méndez [14] realized that there was a fundamen-
tal difference between the (almost ?) massless  dia-
gram of fig. 1a and the U diagram of fig. 1b as com-
pared to the massive BorZ diagram of fig. 1c. The
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Possible Discrepancy with Theory?
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Abstract
t B _ 5 0 > 0 ‘We combine the constraint suggested by the recent BNL E821 measurement of the anomalous magnetic moment of the muon
an - ? l'l on the parameter space of the constrained MSSM (CMSSM) with those provided previously by LEP, the measured rate of
1500 T T v T T T b — sy decay and the cosmological relic density QXhZ. Our treatment of £2 12 includes carefully the direct-channel Higgs
I mh = 117 GeV poles in annihilation of pairs of neutralinos x and a complete analysis of y — £ coannihilation. We find excellent consistency
! 7 between all the constraints for tan 8 2 10 and u > 0, for restricted ranges of the CMSSM parameters mq and my 5. All the
- preferred CMSSM parameter space is within reach of the LHC, but may not be accessible to the Tevatron collider, or to a
’ /
i first-generation et e~ linear collider with centre-of-mass energy below 1.2 TeV. © 2001 Published by Elsevier Science B.V.
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@(%)5 Calculations

Complete Tenth-Order QED Contribution to the Muon g — 2

Tatsumi Aoyama,’? Masashi Hayakawa,3? Toichiro Kinoshita,*?2 and Makiko Nio?
! Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, Japan
2 Nishina Center, RIKEN, Wako, Japan 351-0198
3 Department of Physics, Nagoya University, Nagoya, Japan 464-8602
4 Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York, 14853, U.S.A
(Dated: August 21, 2012)

We report the result of our calculation of the complete tenth-order QED terms of the muon
— 2. Our result is a$® = 753.29 (1.04) in units of (a/7)°, which is about 4.5 s.d. larger than
the leadlng-logarlthmlc estimate 663 (20). We also improved the precision of the eighth-order QED

term of a,, obtaining a(s) = 130.8794 (63) in units of (a/m)*. The new QED contribution is
a,(QED) = 116 584 718 951 (80) x 10~**, which does not resolve the existing discrepancy between
the standard-model prediction and measurement of a;..

PACS numbers: 13.40.Em,14.60.Ef,12.20.Ds Fooq POMQ m {dM@ m
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Hadronic Vacuum Polarization

504 o N:A7, TOF, ACO DM1 ) p
. . . . 40 'Sk
® Most important contribution is from oo 38
. . = 30 5 f
low energies < 1 GeV, dominated by p & ;oo
. ~ 20- Fd 1 By
and w peaks, taking account of o A
. 101 555 ' o “’o% N
interference effects [ e e G e
= L(;O 500 600 700 800 900 1000
E (MeV)

® Uncertainties dominated by p and w
region, and by region between 1 and 2 00 Gev, o
GeV (¢, etc.)

1.0 GeV
contribution error?
® High energies under good control from G Me¥m, | TeTs.,

e'e” -> hadrons

perturbative QCD

a VPO = 693.1(2.8)exp(2-8)sys(0.7)pv+qep X 10710 =
= 693.1(4.0) x 1071,

u

o A N W oS~ U1 O
1 1 1 1 1 1

excl data 4 DASPII, CLEO, CUSB, MAC, CELLO,MARK J [

-1___1_‘4_1_"44_ ___________ R - s +___'__°___+___'__°__-_

Aoyama et al, arXiv:2006.04822 T T T e T T




® Relation between 7 decaysand / = 1
portion of hadronic vacuum

polarization:

vix-(s) =

® BUT what about / = 0 portion?
® AND what about isospin breaking?

® AND uncertainties in 7 decay data?

e NOT INCLUDED by Theory Initiative

02—
Aoyama et al, arXiv:2006.04822
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Comparison of Calculations
<o, of Hadronic Vacuum Polarization
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RBC/UKQCD Hybrid Method

Replace lattice data at very short and long distances
by experimental e+e- scattering data

» Convert R-ratio data to Euclidean correlation function (via the dispersive
integral) and compare with lattice results for windows in Euclidean time
* intermediate window:
expect reduced FV effects and discretization errors
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Higher-Order Hadronic Vacuum

Polarization
a, P N0 = —9.83(7) x 107" aVPNNLO = 1.24(1) x 10710

Aoyama et al, arXiv:2006.04822



Light-by-Light Scattering
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Electroweak
ContrlbuhonsA /\ \

® |Leading one-loop order
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Fermilab Experiment
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Does the magnet look familiar?
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Fermilab Measurement

FNAL result: a,(FNAL) = 116592 040(54) x 10~ "' (0.46 ppm)

Combined result: a,(Exp) = 116592 061(41) x 10" (0.35 ppm)
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History of Measurements & Predictions

: — - i [ 7.3 ppm) 1979, CERN Ill u* data 1974-1976
\ R ‘ [ 7.1 ppm] 1979, theory

- —— - - 1.7 ppm] 1985, Kinoshita et al.

: : ! _ [13 ppm] 1999, BNL p* data 1997
[ 0.66 ppm]) 1999, theory

. : 4 [ 5.1 ppm] 2000, BNL u* data 1998
[ 0.69 ppm] 2000, theory

[ 1.3 ppm] 2001, BNL p* data 1999
' [ 0.57 ppm] 2001, theory

- _[ 0.73 ppm] 2002, BNL 4 * data 2000
[ 0.70 ppm) 2002, theory

[ 0.72 ppm] 2004, BNL u~ data 2001
[ 0.70 ppm] 2004, theory

T _I[ 0.54 ppm] 2006, BNL p* data 1999-2000
[ 0.63 ppm] 2006, theory

[ 0.30 ppm] 2017, Jegerlehner 2017

o
|

3 34
+H

|

i

[ 0.41 ppm] 2020, DHMZ 2019

e ‘ [ 0.32 ppm] 2020, KNT 2019

.. Muon G-2 FNAL data [ 0.46 ppm] 2021, FNAL u* data 2018

R Ex ver _|[ 0.35 ppm] 2021, BNL 2006 + FNAL 2021
p' A € age [ 0.37 ppm] 2020, Muon g-2 theory initiative

|

-
= experimental measurement

+4.20 = theory at the time of measurement publication
ki theory prediction

1 | 1 1 | 1

10 15 20 25 30 35 40
a,- 10 = 1165900



Calculation

Isospin-symmetric
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How to Accommodate BMW?
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Scalar Leptoquarks
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Lepton Flavour

- . BaBar
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LHCb Collaboration, arXiv:2103.11769




New LHCDb
BR(BS — Iu"'lu_)
Measurement

Rare decay induced by loop
diagrams in SM

Measured value < SM
prediction

Further evidence for new
physics associated with the
muon?
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Other Previous Measurements

[JHEP06(2014)133]
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Scalar Leptoquarks

® Consider 2 scenarios for mixing between leptoquarks:

—-LDE ( sin g ¢ Pr, + cosfLq ¢} PR) &’ ¢_2/3

—-2/3

+é (cos OLq ¥ Pr, + sinfLq ¢ PR) & ¢57% + hec.

M¢A =2 TeV HLQ =0.1 M¢B =5 TeV 0LQ = 7r/3

Fileviez, Margui & Plascencia,

® Constraints from 8, — 2, Ry, B, — prpT

arXiv:2103.13397




Leptophilic 2" Gauge Boson
® LHC sets strong bounds only if Z' boson couples to quarks

® Weaker constraints on Z’ bosons coupled to leptons only

o /' > vt — 'y, — 3¢, mixing with Z and anomalous magnetic
moments 9

T

® Canexplaing, — 2 with Z' coupled to L,—-L,

e Search for lepton flavour annihilation int — uvv/t — evv

Alr = moll 4 0029 4+ 0.0014
Alp — evi] |gxp
Alr = uvv

i w_’] — 1.0018 + 0.0014
A[T = evd] |gxp
Alr > evs]l _ | 0010 +0.0014
Alp — evv]|gyp

Buras, Crivellin, Kirk, Mansari & Montull, arXiv:2104.07680



Leptophilic Z° Gauge Boson

® Scenario with no Z - Z’ mixing, left- and right-handed couplings to
U, T only

g{;;n only

5x 1077

4% 107

3x 107"

@-‘
<]

2% 107 . EW fit (excluded), 1o

EW fit (excluded), 20

N Invalid

1 x107"

.A(T — [l.lltl)‘»\rp/A(T o “V’/)SM

Buras, Crivellin, Kirk, Mansari & Montull, arXiv:2104.07680




g, — 2 in Supersymmetry

® Muon i, 4 neutralinos y;, 2 smuons O (fpR)

1 — 1+
znt - wa 75 + sz 275 )¢z¢k —+ H.C.
o _ Most
® One-loop contributions from smuon/neutralino loops: .
Important
: . 11 mi mj
® Left-right mixing: a; —ZSmezRe(KikLik)h(m? mg) L
12 m; 2 m; mj
e Unmixed: af = Zl67r2 (|sz| + | Lk’ )Iz( 2 m?)

Ibrahim & Nath, hep-ph/9910553



g, — 2 in Phenomenological

Supersymmetry
(pPMSSM11)

pMSSM11 _

— LHCI3,w/ (g-2),
——-- LHCS,w/(g—2),
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MasterCode, E. Bagnaschi, ..., JE et al, arXiv:1710.11091
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Supersymmetry

® g, — 2-friendly scenario with light neutralino, chargino & slepton

1000 1000 guamsm s TN
800+
= _
600+
S 8
g 3
400-
® (9-2), ® (g-2),
A (g-2),+Qh? A (g-2),+0n?
200+ (g-2),+Qh+DD (g-2),+Qh%+DD
* (g-2),+QhZ+DD+LHC * (g-2),+Qh?*+DD+LHC
200 400 600 800 1000 200 400 600 800 1000
m.o (GeV) m}? (GeV)
1

® Red star points include all relevant LHC and direct scattering constraints

® Prospects for the ILC

Chakraborti, Heinemeyer & Saha, arXiv:2104.03287




8, 2 in Supersymmetric

9
SU(5) GUT il
7,
(CMSSM) o
Assume universality between squark & slepton, % 3
and between gluon and electroweakino masses 4
at GUT scale 3 o
9 ‘ ‘ Very small contribution
ol 2 ) BMW
| oo —
Tr ‘ ‘
o % 1 > 3 7 5
W A(g;;) le-10
™~ 57
547
Neutralino DM 9
3t J S 8t il
| ! f
1t 6l
T W i
0 1000 2000 3000 %
my [GeV] 4t Smuon
Scenario relates squark/gluino masses 3t
to slepton/neutralino masses o
Cannot accommodate BNL/FNAL result 1l
Smuon masses 2 4 TeV 0 ‘ ‘
0 1000 2000 3000
mﬁR[GeV]

MasterCode, E. Bagnaschi, ..., JE et al, arXiv:2108.xxxxx




Flipped SU(5) GUT

® Extend GUT SU(5) with additional U(1) [motivated by string theory]

® “Flipped” fermion assignments to representations:

fi(5,-3) ={Uf, L;} , F;(10,1)={Q;,D{, N’} , 1;(1,5)=Ef, i=1,2,3

® Break GUT symmetry with 10-dimensional Higgses, electroweak
symmetry with 5-dimensional Higgses:

H(10,1) ={Qu, Dy, Ny} . H(10,-1) = {Qm, Dy, Ny }
h(5,—2) = {Ty,, Hy} , n5,2) ={Ty, H,}
® Superpotential:
W = XY F;F;h + XJ F, fih + X5 filsh + \yHHh + A\sHHh
+ NG FiH ¢q + Nshhda + N bapbe + 1 Py
® Scan free parameters of model:

M5, MXl, mip, ™Ms5, M1, W, MA, A(), tanﬁ



8, 2 in Flipped SU(5)

® Extend GUT SU(5) with additional U(1) [motivated by string theory]

® Supersymmetric partner of right-handed muon in singlet
representation, mass independent of other sparticle masses

® Lightest supersymmetric particle (LSP) is mixture of neutral gauginos
and Higgsinos

® Mass of additional U(1) gaugino is independent of other gauginos
® Smuon and LSP can be much lighter than in conventional SU(5)

® Not subject to strong LHC constraints

® Large contributionto g, — 2 is possible

JE, Evans, Nagata, Nanopoulos & Olive, arXiv:2107.03025



m(y,) [GeV]

LHC vs Supersymmetry

® LHC does not exclude (relatively) light electroweakly-interacting
particles, e.g., sleptons
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g, — 2in FIipped SU(5)

| a <15 +
15<au<30 X
30<4M<50 X
50<a < 100

350 a, > 100

300

250

m GeV

200

LEP lower limit
on slepton mass

x = best-fit point| 5,

0O 200 400 600 800 1000 1200 1400 1600
my GeV

JE, Evans, Nagata, Nanopoulos & Olive, arXiv:2107.03025




g, — 2 in Flipped SU(5)

Histograms of Higgs mass values
Coloured according to d, = %(gﬂ —2) x 10" values
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JE, Evans, Nagata, Nanopoulos & Olive, arXiv:2107.03025
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g, — 2 in Flipped SU(5)

= %( — 2) x 10! as function of Higgs mass, Higgs mixing
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Larger my, requires heavier sparticles — smaller ji mixing — smaller 8, — 2

JE, Evans, Nagata, Nanopoulos & Olive, arXiv:2107.03025




8, 2 in CMSSM & Flipped SU(5)
vs Lattice, Data-Driven Calculation

Data-driven

CMSSM

50 100 150 200 250 300 350

Aa, (x10''): GUT models vs Standard Model calculations

JE, Evans, Nagata, Nanopoulos & Olive, arXiv:2107.03025



g, — 2 in Flipped SU(5)

Parameters & predictions at best-fit point

Input GUT parameters (masses in units of 10'6 GeV)
Mgyt = 1.00 Mx =0.79 V=113
A =0.1 As =0.3 A6 = 0.001
g5 = 0.70 gx = 0.70 my,, = 0.05 eV
Input supersymmetry parameters (masses in GeV units)
M5 = 2460 My = 240 = 4770
mio = 930 mz = 450 my =0
M4 = 2100 Ao/Ms = 0.67 tan g = 35
MSSM particle masses (in GeV units)
my = 84 my, = 4030 mg = 5090
My, = 2160 My, = 5080 My, = 5080
mj, = 101 mj, = 1600 mz = 1010
mg, = 4470 mg. = 4250 Mg, = 4170
mg, = 4410 my = 4170 my, = 4400
my+ = 2160 mp.a = 2100 my+ = 2100
Other observables
Aa, =150 x 1071 Qyh? =0.13 myp, = 122 GeV
Normal-ordered v masses: 7T, ,q+0|y, = 1.1 X 1036 yrs Tposptn0no = 1.1 X 1037 yrs
Inverse-ordered v masses: 7, ,o+n0li0 =3.2x 1037 yrs 7, 4 0], = 2.3 x 10%0 yrs

JE, Evans, Nagata, Nanopoulos & Olive, arXiv:2107.03025



Magnetic Dipole Moment of
the Electron

Discrepancies between
determinations of & from atomic

measurements and a, = (g, — 2)/2
+ QED

Could these be due to same new
physicsina, = (g, — 2)/2 as
discrepancy ina, = (g, — 2)/2?

~34%x 1071 < 8a, < 9.8 x 10713,
comparable to 5a,, X (me/mﬂ)2

Morel , Yao, Cladé & Guellati-Khélifa,

Nature, https://doi.org/10.1038/s41586-020-2964-7
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Future |
MuonE: Proposed CERN Experiment

to Measure HVP in Space-Like Region

Scattering of 150 GeV muons on electrons at CERN SPS
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MuonkE Theory Initiative, Banerjee et al, arXiv:2004.13663



J-PARC Experiment

3 GeV proton beam

(333 uA)
Graphite target

_ (20'mm)
- "
o Surface muon beam
(28 MeV/c)

Muonium Production
(300 K~ 25 meV=>2.3 keV/c)

Super Precision Storage Magnet
(3T, ~1ppm local precision)

Surface muons

Mu production
target

Different technique: ultra-cold muon beam from muonium,
accelerate to 300 MeV, inject into storage ring with radius 66cm

M. Abe et al, Progr. Theor. Exp. Phys., 2019, 053C02



Quo vadis g, — 27

Never forget: the (near-) consistency between theory and experiment for 8, — 2
(and g, — 2) is among the greatest successes of particle physics, particularly
guantum field theory

Need no reminder: the discrepancy between theory and experiment for 8, — 2
may be a window on physics beyond the Standard Model

Still some debate about Standard Model calculation (lattice?)

Plenty of theoretical interpretations proposed: many possible connections to
other physics areas (B decays, dark matter, ...)

More experimental results on the way: FNAL, J-PARC, Muonek, ...

A good time to be alive!
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