

First Pan-African Astro-Particle and Collider Physics Workshop

The T2K Experiment

Neil McCauley

University of Liverpool

Neutrino Oscillations

Neutrinos are an exciting area of physics ripe for new discoveries and more Nobel prizes

Neutrino mixing is characterised by the PMNS matrix.

$$\mathbf{U}_{PMNS} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} \, e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13} \, e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix}$$

Can we complete this picture?

- CP Violating Phase δ
- Mass Ordering.
- Is $\theta_{23} < \text{or} > 45^{\circ}$? (The Octant)

How can we answer these questions with T2K?

- Look for v_e appearance in the v_{μ} beam
- How does this differ for neutrino and antineutrino beams?

Can we find CP violation at the 3σ level before the next generation?

With 2 flavours:

$$p(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

The T2K Experiment

- Narrow band neutrino beam Epeak ~600 MeV
- First measurements using off-axis beam technique
- Near detector complex to measure beam before oscillation

The Detectors

- ♦ Near detectors
 - ♦ Ingrid
 - ♦ On axis
 - ♦ Neutrino beam monitoring
 - ♦ ND280
 - ♦ Off axis
 - Flux and cross section measurements
- ♦ SK
 - ♦ 50 kton water Cherenkov
 - \Leftrightarrow Excellent μ /e separation

Analysis Strategy

- Multiple approached producing consistent results
 - ♦ Frequentist and Bayesian
- Near Detector data
 - ♦ Constrain flux*cross section
 - Predicts event rate at far detector
- Separated and joint fit used in different approaches

T2K Beam

- ♦ 30 GeV protons on target
 - Produces pions which are collected by magnetic horns
 - Change sign of beam by changing horn current direction
- ♦ T2K uses the off-axis beam approach
 - ♦ Narrow band beam
 - More neutrinos you want and less you don't
- ♦ Neutrino flux from beam simulation

♦ Uncertainties constrained by use of NA61/SHINE T2K

replica target data.

Horns and Target

Near Detector Results

- ♦ Fit a set (18) of neutrino and antineutrino samples
- ♦ Constrains
 - ♦ Flux parameters
 - Cross section model parameters
- Correlation between the two further reduces uncertainty in SK prediction
 - \Rightarrow 13% \rightarrow 4.7% uncertainty in 1 ring electron like samples post fit
- New samples to come
 - \Leftrightarrow NC π^0
 - ♦ Hadron Kinematics
- Neutrino cross section measurements

20

FHC 1Ru average spectrum with all systematics

Pre-ND
Post-ND

T2K Preliminary

Super-Kamiokande Data

- ♦ 5 data samples
 - ♦ Single Ring mu-like, neutrino and antineutrino mode
 - ♦ Single Ring e-like, neutrino and antineutrino mode
 - ♦ Single Ring e-like + 1 Michel electron, neutrino mode
- \diamond Work underway to add more $CC\pi$ samples
- Detector systematics from fit to atmospheric neutrino sample

Limits on CP violation

- ♦ Disfavour CP conserving values at 90% CL
- ♦ 35% of values excluded at 3σ
 - Marginalised over the mass ordering

θ_{23} and Δm^2_{32} Results

Rayecian Fit Recults

- ♦ Still consistent with maximal mixing
- Slight preference for upper octant and normal ordering

Dayesiali Fit Results				
	Posterior Probability	$\sin^2 \theta_{23} < 0.5$	$\sin^2 \theta_{23} > 0.5$	Sum
	NO $(\Delta m_{32}^2 > 0)$	0.195	0.613	0.808
	IO $(\Delta m_{32}^2 < 0)$	0.035	0.157	0.192
	Sum	0.230	0.770	1.000

ND280 Upgrade

- ♦ Upgrade near detector to improve granularity, high angle and backwards tracking
 - ♦ New technologies and enhanced sensitivity
- Installation by March 2023
- Beam power upgrade in progress

2018 JINST **13** P02006 NIM A936 (2019) 136-138 1x1x1 cm³ cubes
Polystirene scintillator
1.5% paraterphenyl
0.01% POPOP
Chemical etched reflector
WLS fiber Kuraray Y11
2-clad (Ø=1mm)

Super FGD

Future Prospects

- We expect new exciting data between now and the start of Hyper-Kamiokande
- ♦ ND280 Upgrade
 - ♦ Contribute to reduced systematic uncertainties
 - ♦ Improvements to cross section model
- Beam power upgrade
 - ♦ More statistics
- ♦ SK-Gd
 - ♦ Neutron sensitivity in far detector from 2020
- All improvement expected online for next run from 2023

- ♦ T2K is developing joint fits with Nova and Super-Kamiokande
- Improved reach from combinations
- Correlated systematics and different analysis techniques requires joint working groups
 - ♦ Joint analyses are up and running
- ♦ First results expected for 2023

Summary

- ♦ T2K Oscillation Results
 - ♦ CP violation
 - $\Leftrightarrow \theta_{23} \text{ and } \Delta m^2_{32}$
- ♦ T2K Upgrades
 - ♦ ND280 Upgrade
 - ♦ Beam Power Upgrade
 - ♦ SK-GD
- ♦ Joint fits
 - ♦ Nova
 - Super-Kamiokande

- \Leftrightarrow All detector elements critical as we push for 3σ sensitivity
- New technologies and techniques
- Enhanced sensitivity and reach
- Reach for the ultimately sensitivity of the current generation