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PRESENTATION OUTLINE
Introduction to semi-supervised classification and the
quantifying of uncertainty generated in training models 

Semi-supervised Machine Learning Classification BSM
 Quantifying over-training in physics classification

Zy Study and Dataset
Semi-Supervised DNN and Response
Fitting to DNN output invariant mass
Significance of fake signals generated

Look Elsewhere Effect and need for AI driven data generation
Generative Adversarial Network

 Scaling datasets using WGANs
 Training and Results of WGANs 

Conclusions
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MACHINE LEARNING SEMI-SUPERVISED CLASSIFICATION

FULL SUPERVISION SEMI SUPERVISION

TRAINING DATASETS

Sample 1: Labelled Background dataset
Sample 2: Labelled Signal dataset

CHARACTERISTICS

Excellent classification of signal from background
based on well defined physics in training
datasets.
Results however are biased to characteristics of
given training set. 

TRAINING DATASETS

Sample 1: Labelled Background dataset
Sample 2: Unlabelled (Signal + Background) dataset

CHARACTERISTICS

Classification of signal from background with well
guided training samples.
Provide classification of datasets that are not as
well defined without limiting results by currently
understood physics. 
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Extract Mlly
from DNN
Response

Calculate
Total

Uncertainty
for run
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When using machine learning classification models in particle physics, the extent of uncertainty generated due to
overtraining must be quantified in order to validate results. To investigate the extent of false signals generated, due to
over-training, by semi-supervised classification models, the following methodology is implemented. 

QUANTIFYING OVERTRAINING IN SEMI-SUPERVISION

Zy 
Dataset

Semi-
Supervised

DNN

Fits to signal
and

background
of mlly

ATLAS full simulation
to be used in final
study. Fast simulation
data used for current
analysis

Model trained using a
batch of background
data (sample 1 and 2
containing Zy dataset).

Extracting batches of
different numbers of
events from the DNN
response distribution.

Functional fits to mass
window (signal) and
side-band
(background) regions
of mlly distributions of
each batch.

Calculating
significance of false
signals exposed
through mlly fits.

Repeat multiple times



Z-GAMMA FINAL STATE MONTE
CARLO DATASET

Zγ→(ℓ+ℓ−)γ

Number of  leptons >= 2
Dilepton (muons or electrons) have opposite
charge (ℓ+ℓ−)
Number of  photons (gamma) >= 1

Mass Range based on invariant mass of  di- lepton
system with gamma, mℓℓγ: 

130-170GeV

Zy f inal  state cuts:

Features used to Train DNN:
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Measurement of  Zγ→ℓ+ℓ−γ dif ferential  cross-sections 
in pp col l is ions at  s√=13 TeV with the ATLAS detector

Data Simulation
 

Monte Carlo Zy Data
generated using
Madgraph5 with NNPDF3.0
parton distr ibution
function.  Parton level
generation is done using
Pythia and detector level
simulation is done using
Delphes(v3) 

 



OVERTRAINING ANALYSIS METHODOLOGY 04

The Deep Neural Network (DNN) classifier was selected and optimised to classify using both the full supervision and semi-
supervision frameworks.
A learning rate of 1·10−3 is used with a learning decay of 3·10−4. The model is run for 8 epochs using a batch size of 1. 

SEMI-SUPERVISED DNN CLASSIFIER

Table showing DNN structure used in the analysis.

EXTRACTING MLLY DISTRIBUTIONS FROM DNN RESPONSE DISTRIBUTION

Event batches
selected from the

Response
Distribution

maximum, 1.0, to
minimum, 0.0.

50% 60% 70% 80%



QUANTIFYING UNCERTAINTY SIGNIFICANCE OF FALSE SIGNALS GENERATED

Poisson probability density function
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FITTING TO SIGNAL AND BACKGROUND REGIONS OF INVARIANT MASS
 An exponential, f(x), and exponential + gaussian function, g(x), are applied to the mass
window and sideband regions of the mlly distribution respectively.

Exponential Function

Exponential + Gaussian Function

The log-likelihood function, ln(L):

Side-band (background) region:

Mass-window (signal) region:

Probability of event following functional fits:

Log likelihood function:

Significance between ln(L) of signal and background:
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In searches for resonances within a given mass range, the significance of observing a local excess of events, must
consider the probability of observing the same excess elsewhere within the range. 

NEED FOR FREQUENTIST STUDY -  LOOK ELSEWHERE EFFECT

Data
Generator

Zy 
Dataset

Semi-
Supervised

DNN

Extract Mlly
from DNN
Response

Fits  to signal
and

background
of mlly

Calculate
Total

Uncertainty



07GENERATIVE ADVERSARIAL NETWORKS

WASSERSTEIN GAN WITH GRADIENT PENALTY

Loss Function: 

GAN training: minimizing Generator loss and maximise Discriminator loss
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WASSERSTEIN GAN WITH GRADIENT PENALTY

Generator Model Architecture:

Critic Model Architecture:

Hyper-parameters:
latent dimension  = 16
batch size = 128
learning rate = 1e-4
lamda (gp weight) = 0.001

data transform = minmax scaler



09

WGAN TRAINING

Critic Loss at each Epoch:

increasing batch size - slows training but difficulty converging
decreasing batch size  - speeds up training but reduces  success
at very small sizes 

Batch size Hyper-parameter:

Model built using pytorch and trained using google colaboratory
GPU. 500 epochs trained in ±3 hours.
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Generator Loss at each Epoch:
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WGAN RESULTS - FEATURE DISTRIBUTIONS
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WGAN RESULTS - FEATURE CORRELATION



CONCLUSIONS

WGAN FOR USE IN SCALING SUB-ATOMIC
PARTICLE PHYSICS DATASETS

The model is able to a reasonable extent produce a
synthetic dataset that follows the feature distributions
and event-wise feature correlation of the training
dataset. 

FUTURE WORK

Further optimisation of generator and critic network
architecture for improved results. Completing frequentist
analysis of semi-supervised uncertainty quantification
with inclusion of GANs.
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