Response of gap/crack scintillators of the Tile Calorimeter of the ATLAS detector to isolated muons from  $W \rightarrow \mu \nu$  events.

#### Phuti Rapheeha, Pawel Jan Klimek, Bruce Mellado

First Pan-African Astro-Particle and Collider Physics Workshop March 23, 2022





## Overview

# The ATLAS Experiment The Tile Calorimeter

Object Reconstruction and Event Selection

Run II Response of the gap/crack scintillators
 Cell response phi-uniformity

#### 4 Conclusions

## The ATLAS Detector at the LHC



- It is a general purpose detector.
- It is purpose-built for the precise measurement of known physics and for searching for physics Beyond the Standard Model.
- It is made of systems of tracking detectors and calorimeters.

## Layout of TileCal Cells.



- The Tile Calorimeter (TileCal) is made of a fixed central barrel and two moveable extended barrels.
- The TileCal is composed of 64 modules, made of alternating layers of iron as an absorbing medium and plastic scintillating tiles as the active medium

## The ITC



- The Intermediate Tile Calorimeter (ITC) is a plug detector located gap region, in between the long and the extended barrels.
- It was designed to correct for energy lost in the passive material that fills the gap region.
- The gap/crack region is covered by the E1, E2, E3 and E4 scintillators.
- The gap scintillators are 12.7 mm wide and the crack scintillators are 6 mm wide

## Response of gap/crack scintillators to isolated muons

- The energy loss of through matter is a well understood process.
- For high energy muons, the dominant energy loss is through ionisation.
  - This well understood behaviour is used to study the response of the gap/crack scintillators to passing muons.
- The performance is evaluated in three data taking periods

| Period      | $\int {\cal L} dt$ [fb $^{-1}$ ] |
|-------------|----------------------------------|
| 2015 - 2016 | 36.2                             |
| 2017        | 44.3                             |
| 2018        | 58.5                             |

• This study uses muons originating from the  $W \to \mu \nu$  events from proton-proton collisions observed the ATLAS detector.

## **Object Reconstruction and Event Selection**



Table: Event selection based on the W decays

|   | Variable                        | Run 2 Requirement                           |
|---|---------------------------------|---------------------------------------------|
| 1 | Number of Muons                 | $N_{ m muons} = 1$                          |
| 2 | Transverse invariant mass       | $40 < M_T < 140$ GeV                        |
| 3 | Missing transverse energy       | $30 < E_T^{ m miss} < 120~{ m GeV}$         |
| 4 | Track isolation                 | $\sum p_T _{\Delta R=0.4} < 1  { m GeV}$    |
| 5 | Calorimeter isolation           | $E_{ m LAr} _{\Delta R=0.4} < 1.5~{ m GeV}$ |
| 6 | Momentum of the muon            | $20 < p^{\mu} <= 80 \; \mathrm{GeV}$        |
| 7 | Transverse momentum of the muon | $p_T^\mu > 28  { m GeV}$                    |

- A  $W^+$  boson is created by interaction of up and antidown quarks.
- The interaction creates a single muon a neutrino
- The muon is reconstructed from the hits in the ID and MS
- The mysterious neutrino is reconstructed as the missing transverse energy,  $E_T^{\rm miss}$

### **Data-MC** Comparisons



#### Data - MC



# Cell Level Requirements

|   | Variable           | Run 2 Requirement                          |
|---|--------------------|--------------------------------------------|
| 1 | Muon path length   | E1, E2: $dx > 11$ mm; E3, E4: $dx > 5$ mm  |
| 2 | Cell energy        | $\Delta E > 60$ MeV                        |
| 3 | Track impact point | $ \Delta \phi(\mu, \mathrm{cell}  < 0.046$ |

## $\phi$ vs dE/dx in the E1 Cells



## $\phi$ vs dE/dx in the E2 Cells



## $\phi$ vs dE/dx in the E3 Cells



#### $\phi$ vs dE/dx in the E4 Cells



## Conclusions

- Isolated muons were used to measure the  $\phi$  uniformity of the response of muons in the gap/crack scintillators using data collected during the 2015 and 2016, 2017 and 2018 periods.
- The E1, E2 and E4 cells show a uniform response.
- Understanding the deviation in E3 cells forms part of the ongoing study