Search for Higgs Pair Production in *bbWW** Decay Channel With the ATLAS Detector

First Pan-African Astro-Particle and Collider Physics Workshop 2022

Hidaoui Mourad

Ibn Tofail University, Kenitra, Morocco Faculty of science, Department of Physics

Supervised by: Prof. Gouighri Mohamed

March 23rd , 2022

Introduction

tit ci ben Befäl

★ The discovery of the SM Higgs boson with a mass of about 125 GeV was made by ATLAS and CMS in 2012.

 \star Part of the LHC program consist of measuring the properties of the Higgs Boson.

Ibn Tofail University

Higgs Potential

Shape of the Higgs potential

The Trilinear coupling leads to Di-Higgs production.

> Help to study the shape of the Higgs potential and solve important problem by measuring λ_{HHH}

Higgs Pair Production in the SM

HH production is a rare process with a unique sensitivity for certain Higgs properties The cross section is very small ~ 31.05 fb. ~1000x smaller than single Higgs The main HH production mode is by gluon-gluon fusion :

The Di-Higgs production is motivated by the non-resonant and resonant production

- > Non-resonant: leads to direct measurements of the trilinear self-coupling constant λ_{HHH}
- > Resonant: study the presence of new particles decaying to HH

Ibn Tofail University

Ibn Tofail University

Hidaoui Mourad

4

Higgs Pair Production Beyond the SM

- The Physics beyond SM can manifest in the resonant mode HH production.
- New Particle X decay to a pair of SM Higgs

The decaying particle X can be:

- Heavy scalar as in 2HDM and MSSM models.
- Spin 2 graviton as predicted by Randal-Sundrum Model (RS)

Di-Higgs Decay Channels

	bb	WW	$\tau \tau$	ZZ	$\gamma\gamma$
bb	34				
WW	25	4.6			
au au	7.3	2.7	0.39		
ZZ	3.1	1.1	0.33	0.07	
$\gamma\gamma$	0.26	0.1	0.02	0.01	$< 10^{-3}$

Branching ratio (%)

No channel with large branching ratio & clean final state

This talk focus on :

 $HH \rightarrow bbWW$: the second largest Branching ratio.

The Di-Higgs system can decay to many channels:

 $HH \rightarrow bbbb$ <u>ATLAS-CONF-2021-035</u>

- ★ The largest Branching ratio.
- ★ Challenging multi-jet backgrounds.

Analysis Strategy

- Data collected with ATLAS Detector
- Using full Run 2, $\int Ldt = 139fb^{-1}$

- We are studying Di-Higgs resonant production in the bbWW 1 lepton final state:
 - ★ $H \rightarrow bb$ and $H \rightarrow WW$
 - ★ $W \rightarrow qq$ and $W \rightarrow lv$ (1 lepton + neutrino)

Ibn Tofail University

Boosted Topology

Search for a heavy resonance X decaying to a paire of SM Higgs:

Boosted topology: HH decaying from a heavy BSM particle causing the decay products of the H's to be merged.

Challenge:

Decay product appears so close to each other in the detector.

- Individual reconstruction is very difficult.
- Overlap between jet and the lepton.

Leads to miss reconstruction of the jet substructure

<u>**Track-Assisted Reclustred**</u> jet (TAR jet): designed to perform well in dense environments.

- Combined information (ID + had calorimeter)
- Inputs: small-R jets which have been overlap removed against lepton.

Excellent resolution and flexibility

Background

The background processes that imitate this signature in the detector

are:

The dominant SM background:

- ★ Top process (tt) & W+jets.Other backgrounds:
- \star single Top, diboson.

While those backgrounds can be well simulated with MC generators, **The Multijet background** requires a data-driven approach for a reasonable estimate.

We use Matrix Method for the estimation.

W+jets process

Matrix Method

• We use two level selection (loose and tight) leptons to estimate non-prompt lepton

$$\begin{split} N_L &= N_{prompt} + N_{QCD} & \begin{tabular}{ll} Loose & Tight \\ \hline N_T &= \epsilon \times N_{prompt} + f \times N_{QCD} & \begin{tabular}{ll} Loose ID and no isolation & medium ID and tight track only isolation \\ \hline requirements for loose & tight selection \\ \hline \\ e &= \frac{N_T^{prompt}}{N_L^{prompt}} & \end{tabular} fraction of prompt leptons passing tight selection (Real rates) \\ f &= \frac{N_T^{QCD}}{N_L^{QCD}} & \end{tabular} fraction of non-prompt leptons passing tight selection (Fake rates) \\ \end{split}$$

• Event-weight:
$$w_{QCD}(N_T, N_A) = f \times N_{QCD} = \frac{(\epsilon - 1) f}{\epsilon - f} N_T + \frac{\epsilon f}{\epsilon - f} N_A$$

• Use event-weight to weight data event to estimate Multijet background.

Anti-tight

Ibn Tofail University

Real & Fake Rates

• 2D rates using lepton p_T and ptvarcone20:

Real Rates (ϵ): obtained from MC in the SR

Ibn Tofail University

Multijet Estimation

Kinematic variables distributions:

• Good agreement between MC prediction and data in W+jets CR.

Ibn Tofail University

Multijet Estimation

المعنية المعني المعنية المعنية

• Kinematic variables distributions:

• Good agreement between MC prediction and data in W+jets CR.

Ibn Tofail University

Conclusion

- The Higgs pair production is a rare process, but it can :
 - > Lead to direct measurements of the trilinear self-coupling constant λ_{HHH} .
 - ➤ Indicate the existence of new physics BSM.
- The Multijet background require a data driven methods to be estimated
 - Matrix method performs well.
 - Good agreement between MC prediction and data

Thank you !

