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The Standard Model (SM) of particle physics was completed by the discovery of the Higgs
boson in 2012 by the ATLAS and CMS collaborations. However, the SM is not able to explain
a number of phenomena and anomalies in the data. These discrepancies to the SM
motivate the search for new bosons. In this reseacrh, searches for new bosons are
completed by looking for Zgamma resonances in Zγ (pp →H →Zγ) fast simulation events.
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Research Background & MotivationII

Part 1: Machine learning based Data Generation to complement

traditional MC production mechanisms.

Part 2: Machine learning based signal classification

This research is concentrated on two main processes related to the use

of machine learning in the search: 



Data generation for particle physics data is a crucial process in the search for
new bosons at the LHC.

MC simulation at the LHC -> large amount of the total CPU hours of the ATLAS
experiment (see graph right). 

Using trained deep learning models to produce valid MC fast simulation data
instead of MC production mechanisms -> Can help alleviate the some of the
required CPU hours and free up for other tasks 

The luminosity of the detectors at the LHC is increasing continuously, this will
increase the need for MC simulated data or deep learning-based generated
MC simulated data.

In this research, Variational Autoencoders VAEs are assessed as a deep
learning-based event production mechanism. 

Data Generation Phase 1
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Signal classification -> crucial process at the LHC in the search
for new bosons. Machine learning techniques are great at this,
especially with extremely large datasets!

A VAE can be trained as both a Signal Classification and a Data
Generation model in one. 

VAEs can be used to search for resonances in data by training on
a specific selection of background events, and then during testing
background samples with some injected signal events cant be fed
through the VAE and the reconstruction loss metric can be used
to identify whether there are any signal events present in the
test sample.

Signal Classification Phase 2
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A well trained VAE can be used in the search for new boson at the
LHC simultaneously for data generation and signal classification. 
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HypothesesI



Model Developement

A Variational Autoencoder base model was

selected and developed as the base model. VAEs

are tried and tested generative and classification

arhcitectures. 

Evaluation

A number of evaluation metrics have been

selected to evaluate the models generative and

classification capabilities.
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MethodologyV

Dataset Exploration &
Kinematic Variable
Selection

Kinematic variables selected from the Zγ (pp →H

→Zγ) MC generated dataset where used to test

the hypothesis.

Optimisation

The base model requires extensive hyper-

parameter optimisation to achieve results that

are favourable fo the search.



The MC events corresponding to the Zγ sample in this analysis have been

generated using Madgraph5 with the NNPDF3.0 parton distribution functions.

Here we have utilized the Standard Model (SM) of particle physics for which

the UFO model files required by the Madgraph is obtained from FeynRules. The

parton level generation if followed by the parton showering and hadronization

by Pythia and then the detector level simulation is performed using

Delphes(v3). The jets at this level has been constructed using Fastjet which

involves the anti-KT jet algorithm with PT > 20 GeV and radius R = 0.5. While

generating the sample we decayed the Z boson to leptons. We also have

applied some baseline cuts on the leptons and photons at the Madgraph level

to enhance the statistics.

Kinematic variable selection:

 ['mlly', 'phi_zy', 'eta_zy', 'pt_zy', 'e_zy',  'mll', 'phi_ll', 'eta_ll', 'pt_ll', 'e_ll', 'dR_ll',  'MET', 'MET_phi', 'Nj', 'Ncj', 'dPhi_ll',

'dPhi_METZy', 'llpt_mlly']
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Dataset Description & Kinematic Variable Selection
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MethodologyV

During training, the VAE learns to

reconstruct the training events that are

fed forward through the network.

Weights are learnt using

backpropagation and optimisation of

the loss function. 

The VAE loss function consists of 2

terms. 

-The reconstruction loss (which can

be seen in the diagram)

-The KL divergence

VAE loss function:

Model Development
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MethodologyV

Latent space variables (mean and

variance) for each latent variable

normal distribution are learnt

through variational inference (as a

result of the addition of the KL

divergence to the loss function).

These learned latent space

distributions can then be used to

generate new events. 

Model Development
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The diagram on the right shows how

the latent space learned distributions

can be sampled from and the sample

can be fed forward through the

decoder in order to generate a new

event. 

This can be done using random

sampling from the latent space to

generate many events.

Model Development
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A look at some of the important components of the VAE architecture and loss function.

Model Development

The loss function: The latent space:

Variational beta:
Architectural Considerations

The latent space of a Variational
Autoencoder is made up of a normal
distribution for each latent space
variable. Visualisations of this Latent
space can be done using PCA and tSNE.

The VAE loss function is made up of two terms. The reconstruction loss
is responsible for minimising the difference between an input event
and a reconstructed event, during training.
The KL divergence loss term is a regularization term and is responsible
for generating a latent space that is appropriate for generative
purposes. Variational inference is used to create normal distributions
for each latent space variable.  

The Variational-beta parameter in the loss function is used to weight
the importance of the KL-divergence loss term against that of the
reconstruction loss term. 

This is useful to optimise for different batch_sizes architectural
complexity and learning rates.

Different architecture shapes need to be
assessed during hyper-parameter
optimisation to see which one is more
appropriate for event generation.

The most traditional shape can be seen
in the top left. Whilst the least frequently
used shape can be seen bottom right.



Hyper-parameters can be optimised in order to optimise generation accuracy. The following hyper-

parameters were selected for hyper-parameter optimisation:
-Training batch_size [real]:

-Asyemetry [truth]:

-Learning rate [float]:

-Activation function [str]:

-Latent dimension size [real]:

-Number of hidden layers [real]:

-Number of nodes in hidden layer 1:

-Number of nodes in hidden layer 2:

-Number of nodes in hidden layer 3:

11

MethodologyV

Model Development - Hyperparameter Optimisation



Evaluation metrics are required in both the training of the VAE and for the final evaluation of the generated results. 

During Training Evaluation Metrics:

-Simply the loss and the loss components:

       - reconstruction loss 

       - KL divergence

       - VAE loss

Data Generation Evaluation Metrics:

- KL Divergence (between input events data set and generated)

- Pearsons correlation coefficient

Plot based evaluation:

- Distribution Plots

- Correlation Plots

- Latent Space tSNE plots 12
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Evaluation Metrics
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ResultsV

Preliminary results for phase 1 of the research (Data Generation) show promise. Further evaluation will be completed to
obtain even better results before continuing to phase 2. 

 



The VAE architecture is a valuable resource in the search for new bosons
at the LHC. This research has produced decent results for the first phase
(data generation). 
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ConclusionI

Future Work:

In the second phase of the research, the classification capabilities will be
assessed whilst still assuring sufficient data generation capability during
optimisation of classification.


