Institute for Collider Particle Physics

UNIVERSITY OF THE WITWATERSRAND

A Burn-in test station for the ATLAS Phase-II Tile-calorimeter lowvoltage power supply transformercoupled buck converters

National Research Foundation

Ryan Mckenzie, School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand First Pan-African Astro-Particle and Collider Physics workshop

21 March 2022

ryan.peter.mckenzie@cern.ch

Talk Outline

The ATLAS Tile-calorimeter

TileCal Phase-II Upgrade

Low-Voltage Power Supply Brick

Quality Assurance testing

Burn-in testing and its motivation

Burn-in Test Station - Overview

- Hardware

- Software

- First Burn-in

Conclusion

Ryan Mckenzie

The ATLAS Tile-Calorimeter

- The Tile Calorimeter (TileCal) is a sampling calorimeter which forms the central section of the Hadronic calorimeter of the ATLAS experiment.
- TileCal performs several critical functions within ATLAS such as: the measurement and reconstruction of hadrons, jets, hadronic decays of τleptons and missing transverse energy. It also participates in muon identification and provides inputs to the Level 1 calorimeter trigger system.
- The detector is located within the region η <|1.7| and is partitioned into four barrel regions. Each barrel region consists of 64 wedge shaped modules which cover Δφ~0.1 and are composed of plastic scintillator tiles, functioning as the active media, inter-spaced by steel absorber plates.
- On-detector electronics located in extractable "drawers" at the outermost part of the module.
- Light produced by a charged particle passing through the plastic scintillating tiles is read out via wavelength shifting fibers to Photo-Multiplier Tubes inside the drawer

Fig. Left - The ATLAS detector, Right - The ATLAS inner Barrel, Right J. Pequenao, Computer Generated image of the ATLAS calorimeter, (2008), https: // cds. cern. ch/ record/ 1095927

TileCal Phase-II Upgrade

- In the year 2029 the start of the operation of the High-luminosity Large Hadron Collider(HL-LHC) is planned .
- The resulting HL-LHC environment has necessitated the development of new electronics, both on and off detector, in order to ensure the continued peak performance of TileCal.
- The new electronics need to meet the requirements of a 1 MHz trigger for the Level 1 trigger system, higher resistance to ambient radiation exposure and improved performance under pileup conditions.

See link for summary of the entire Phase-II upgrade

Link: Upgrade of ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

Upgrade LV power distribution system.

- A new three-stage system is being implemented.
- New LVPS Brick (Crux)

Fig. The upgraded readout chain and power distribution of TileCal.

MD: Mini Drawer SD: Super Drawer PMT: Photo multiplier Tube FELIX: Front-End Link eXchange **TDAQi: Trigger and Data** Acquisition Interface FPGA: Field Programmable Gate Array PPr: Pre Processor ADC: Analog To Digital Converter HVAD: High Voltage Active Divider DCS: Detector Control System ELMB: Embedded Local **Monitoring Board ELMB-MB: Embedded** Local Monitoring Board Mother Board HV: High Voltage LV: Low Voltage FR: Front End

1 MHz

FELIX

LO

Ryan Mckenzie

Low Voltage Power Supply Brick

- Topology: A transformer-coupled buck converter.
- Converts bulk 200 VDC power received from off-detector to the 10 VDC which is then distributed to the Frontend electronics.
- Makes use of inbuilt protection circuitry Over voltage protection, Over current protection and Over temperature protection.
- 1136 new LVPS Bricks to be locally produced by SA-CERN over the next two years.
- The required lifetime of a Brick within TileCal is ~ 20 years.
- Access to the LVPS Bricks is on the order of once per year.

Current Brick Version - V8.5.0:

- New radiation hardness requirements.
- Single output voltage
- Increased efficiency
- Reduced operating temperature

Fig. An LVPS inside TileCal.

Fig. Inside an LVPS.

Primary side MOSFETs Output inductor.

Fig. High efficiency LVPS Brick top view .

Locally produced elements: ✓ Printed circuit boards

Ceramic posts

 Production of final product

Fig. High efficiency LVPS Brick bottom view .

What is Burn-in and why should we do it?

- Burn-in is a form of accelerated aging of electronic components.
- We make use of Burn-in as we want to age components out of the infant mortality region so that the normal operation period coincides with the Bricks installation within the TileCal.
- Improves LVPS Brick reliability once on detector by encouraging failures, associated with the infant mortality region, before installation.

Brick version	MTTF (Years)	Predicated failure rate (Bricks/year) No correction factor	Observed failure rate (Bricks/year)	Predicated failure rate With correction facto			
V6.5.4	165	~ 12.4	~ 5	5			
V7.5.0	406	~ 5	~ 2.4	2.4			
V8.4.2	1198	~ 1.7	-	0.8			

Table: V8.4.2 LVPS reliability study 20 October 2020.

- The operation of the LVPS bricks at a higher load and operating temperature should cause sigma the components to fail within the Burn-in station as opposed to prematurely within ATLAS.
- The Burn-in parameters allow for accelerated aging. That is, the Burn-in Run-time of the Bricks is multiplied by an acceleration factor.

Parameter	Burn-in	Nominal	Protection circuitry trip points
Operating temperature	60	35 ° C *	70° C
Load	5 A	2.3 A	6.9 A
Run Time	8 hours **	-	-

Table : V8.5.0 Brick Burn-in parameters, nominal Brick operating parameters and protection circuitry trip points.

 $[\]tau_o$ = Equivalent operating time at T_o MTTF – Mean Time To Failure

*The nominal operating temperature is heavily influenced by the primary side MOSFETS. ** The Burn-in run time is currently undergoing additional research. 8-hours is a legacy parameter.

Burn-in Test Station

The Test station is composed of 4 elements which work together to facilitate the Burn-in of 8 Bricks per test cycle:

• **Test bed** – Required to contain the Burn-in station electronics, provide thermal and electrical insulation.

(D)

- Cooling system Provides active cooling of the Bricks as well as the Dummy-Load boards. Allows for the control of the Bricks operating temperature.
- Electronics Allow for control and monitoring of the Bricks as well as the applied load.
- <u>Software</u> Allows for the control of the custom electronics, the HV power supply as well as the storage and real time viewing of data.

DC power supply

Fig. Burn-in test station.

Ryan Mckenzie,

Test-bed

PC

В

First Pan-African Astro-Particle and Collider Physics Workshop.

Water chiller (E)GUI

Burn-in Test Station Hardware

 Based on the legacy designs developed by ANL, the Burn-in station PCBs have been redesigned by the University of Texas Arlington (UTA) and tested by the University of the Witwatersrand (Wits)

There are four types of custom PCBs within a Burn-in station:

- Main Board (X1) is responsible for communicating to the Brick and load interface boards through an applicationspecific control and monitoring program developed in LabVIEW. It does this by operating purely as a Demultiplexer to each of the Interface boards.
- Brick Interface Boards (x8) provide control and data acquisition functions to their associated Brick. These included the on/off control of the Bricks, the on/off control of the High-voltage input to the Bricks and the digitization of analog performance signals received from the Bricks.
- Load Interface Board (X2) provide control and data acquisition functions to its associated Dummy-Load. It controls the load applied by the DL to the Bricks and digitizes analog performance signals received from the DL.
- **Dummy-Loads (x2)** are responsible for the application of a load to the Bricks. A DL converts the electric power into heat which is then removed by the cooling system.

Fig. Block diagram of the burn-in station hardware..

BIB = Burn-in Interface Board LIB = Load Interface Board MB = Main Board DL = Dummy-Load HV = High Voltage AC = Alternating Current CP = Cooling Plate PC = Personal Computer APP = APPlication

Burn-in Test Station Software

BIB = Burn-in Interface Board LIB = Load Interface Board MB = Main Board DL = Dummy-Load HV = High Voltage PIC = Programmable Integrated Circuit

- The Burn-in LabVIEW Application (BLA) and PIC firmware were originally developed by Argonne National Laboratory (ANL) in 2006 for the V6 Brick.
- **Software required** for the operation of a Burn-in station can be divided into three categories:
- BLA provides control and monitoring of the Burn-in station and communicates via a PC over USB to the MB and PVS60085MR HV power supply. A PC runs the BLA responsible for Brick identification, Brick selection, Brick control (starting, stopping and load current), Brick and load performance measurements, HV control and monitoring, Brick trip detection and automatic restart, Burn-in time management and data logging.
- PIC firmware The MB embeds PIC firmware responsible for addressing and communicating from the BLA to the Interface boards of the Burn-in station.
- Power supply instrumentation driver software routines that control the programmable instrument.

Fig. A simplified block diagram of the Burn-in station communication system..

Burn-in Test – The First Burn-in

Water chiller set to 18 °C Load set to 5 A V_In = 200 V V_Out – 11 V

Fig. Top and bottom left –Thermal imaging of LV Brick undergoing Burn-in. Top-Right – Thermal imaging of a Dummy-load MOSFET operating in the ohmic region. Bottom Right – Thermal imaging of an entire Burn-in station with the position 0 LV Brick undergoing Burn-in.

Burn-in Test – Data collection

3/17/2022 12:34 BrickID: BRI TransformerID: Comments:	:34 РМ СК 1		PRG:MAIN_PR Operator:	G_BURNIN_V8. Ryan Mckenz	vi ie								
TIME TS			T2[°C]	тз[°С]	VinHV[V]	VinBrick[V]	<pre>IinBrick[A]</pre>	VoutBrick	IoutBrick[A]	VoutLoad[V]	Iload[A]	Iset[A]	Eff[%]
3/17/2022 12:34	:41 PM	111	25,131539	25.289492	200.000000	201.375034	0.289751	11.000167	5.066141	11.646533	5.117871	5.000000	NaN
3/17/2022 12:34	:43 PM	111	25.997043	25.779322	200.010000	201.375034	0.292397	11.000167	5.064786	11.646533	5.115890	5.000000	NaN
3/17/2022 12:34	:45 PM	111	27.389086	26.310384	200.010000	201.375034	0.295074	11.000167	5.062967	11.646533	5.119821	5.000000	NaN
3/17/2022 12:34	:47 PM	111	28.904854	26.780939	200.010000	201.375034	0.293738	11.000167	5.059792	11.645895	5.113904	5.000000	NaN
3/17/2022 12:34	:49 PM	111	30.381551	27.209512	200.010000	201.375034	0.296387	11.000167	5.057515	11.645895	5.109936	5.000000	NaN
3/17/2022 12:34	:51 PM	111	31.782637	27.600664	200.010000	201.382579	0.300412	11.000167	5.055710	11.645895	5.107934	5.000000	NaN
3/17/2022 12:34	:53 PM	111	33.068251	27.949160	200.010000	201.375034	0.301749	11.000167	5.053435	11.646533	5.111917	5.000000	NaN
3/17/2022 12:34	:55 PM	111	34.275537	28.281716	200.010000	201.382579	0.303089	11.000167	5.051626	11.646533	5.105948	5.000000	NaN
3/17/2022 12:34	:57 PM	111	35.408149	28.592477	200.010000	201.375034	0.305739	11.000167	5.049805	11.647174	5.107934	5.000000	NaN
3/17/2022 12:34	:59 PM	111	36.454639	28.878534	200.010000	201.375034	0.304402	11.000167	5.047530	11.646533	5.103961	5.000000	NaN
3/17/2022 12:35	:01 PM	111	37.446449	29.143705	200.010000	201.382579	0.308424	11.000167	5.047076	11.647174	5.100030	5.000000	NaN
3/17/2022 12:35	:03 PM	111	38.375546	29.404099	200.010000	201.375034	0.311105	11.000167	5.045269	11.647801	5.103961	5.000000	94.894138
3/17/2022 12:35	:05 PM	111	39.232169	29.644051	200.010000	201.382579	0.309764	11.000167	5.044358	11.647801	5.100030	5.000000	NaN
3/17/2022 12:35	:07 PM	111	40.037727	29.860977	200.010000	201.375034	0.312413	11.000167	5.043447	11.647801	5.098044	5.000000	94.386975
3/17/2022 12:35	:09 PM	111	40.807837	30.076865	200.010000	201.375034	0.312413	11.000167	5.042548	11.649099	5.102011	5.000000	94.470960
3/17/2022 12:35	:11 PM	111	41.518531	30.273083	200.010000	201.375034	0.312413	11.000167	5.041182	11.649099	5.102011	5.000000	94.470960
3/17/2022 12:35	:13 PM	111	42.193472	30.468429	200.010000	201.375034	0.315084	11.000167	5.040727	11.648441	5.096052	5.000000	93.555575
3/17/2022 12:35	:15 PM	111	42.838187	30.644699	200.010000	201.375034	0.319113	11.000167	5.040727	11.649737	5.100030	5.000000	92.456919
3/17/2022 12:35	:17 PM	111	43.433461	30.811053	200.010000	201.375034	0.317775	11.000167	5.039818	11.649737	5.100030	5.000000	92.845920
3/17/2022 12:35	:19 PM	111	44.102013	30.982809	200.010000	201.375034	0.319113	11.000167	5.038453	11.650364	5.098044	5.000000	92.425878
3/17/2022 12:35	:21 PM	111	44.628243	31.141867	200.010000	201.375034	0.320425	11.000167	5.038453	11.649737	5.094060	5.000000	91.970427
3/17/2022 12:35	:23 PM	111	45.129172	31.312259	200.010000	201.382579	0.321762	11.000167	5.037997	11.650364	5.090093	5.000000	91.518424
3/17/2022 12:35	:25 PM	111	45.605522	31.443290	200.010000	201.382579	0.324439	11.000167	5.037997	11.651004	5.096052	5.000000	90.874401
3/17/2022 12:35	:27 PM	111	46.054152	31.597618	200.010000	201.382579	0.327128	11.000167	5.037997	11.651642	5.098044	5.000000	90.167850
3/17/2022 12:35	:29 PM	111	46.479621	31.739563	200.010000	201.382579	0.325787	11.000167	5.036644	11.651642	5.096052	5.000000	90.503489
3/17/2022 12:35	:31 PM	111	46.886249	31.883928	200.010000	201.382579	0.325787	11.000167	5.037099	11.651642	5.090093	5.000000	90.397657
3/17/2022 12:35	:33 PM	111	47.280220	32.016100	200.010000	201.382579	0.328464	11.000167	5.037099	11.652283	5.096052	5.000000	89.770686
3/17/2022 12:35	:35 PM	111	47.648670	32.141998	200.010000	201.382579	0.328464	11.000167	5.036644	11.652283	5.092074	5.000000	89.700611
3/17/2022 12:35	:37 PM	111	48.008887	32.261669	200.010000	201.382579	0.333763	11.000167	5.037099	11.652910	5.090093	5.000000	88.246876
2/17/2022 12.25	• 30 DM	111	18 2/10071	20 270071	200 010000	201 275021	A 222762	11 000167	5 027000	11 653566	5 002071	5 000000	88 280507

Fig. Burn-in test data output after preliminary calibration.

Conclusions

Reliability and Quality assurance LVPS Brick testing.

Burn-in testing • Hardware

• Software

• The first "burn-in"

What next?

- Calibration of B<mark>urn-i</mark>n station.
- Production of Bricks.
- Testing and Burn-in of Bricks.

Funded by:

science & innovation

National Research Foundation

TileCal & Phase II upgrade.

Ryan Mckenzie

Reference slides

The ATLAS detector

44m

Fig. Left - The ATLAS detector, Right - The ATLAS inner Barrel, Right J. Pequenao, Computer Generated image of the ATLAS calorimeter, (2008), https: // cds. cern. ch/ record/ 1095927

Legacy Low-Voltage System

- A **2-stage system** in which Bulk 200 VDC power is converted to the voltages required by the FE electronics by different types of Brick.
- **Provides ON/OFF control** (Via Aux-boards) of the bricks in two groups which start successively.

LV System Upgrade

- **Conversion to a 3-stage system** which makes use of Point-ofload regulators (POLs). POLs function to step-down the 10 VDC received from an LVPS Brick to the voltage required by local circuits. This allows for the use of a single type of brick with a standardized 10V output;
- **Tri-state functionality** is being introduced which allows for individual Bricks startup/shutdown. This functionality is so named due to the Aux-boards ability to send 3 different state signals to an LVPS Brick;

Fig. A Block diagram of the Phase-II upgrade 3-stage low-voltage system.

Low Voltage Power Supply Brick

Fig. LVPS Brick functional block diagram.

Quality assurance testing

Burn-in Test Station GUI

