Introduction 000

> مامعة عبد المالك السعد ج Iniversité Abdelmoleh Essaad

Inert Doublet Model

liggs strahlung

Results

Conclusion

Full next-to-leading-order corrections to the Higgs strahlung process from electron-positron collisions in the Inert Higgs Doublet Model

Hamza Abouabid

Faculté des sciences et techniques Tangier, Université Abdelmalek Assaadi, Morocco

In Collaboration with: A. Arhrib, J. EL Falaki, R. Benbrik, B.Gong, W. Xi, and Q. Yan Based on : JHEP05(2021)100

March 22, 2022

Hamza Abouabid

hamza.abouabid@gmail.com

A D > <
 A P >
 A

Inert Doublet Model	Higgs strahlung	Results	Conclusion
00000000	00000000	00000	000

Outlines

1 Introduction

2 Inert Doublet Model

Higgs strahlung Leading-order Next-to-leading-order

4 Results

Hamza Abouabid

Hamza Abouabid hamza.abouabid@gmail.com Université Abdelmalek Assaadi

Introduction	Inert Doublet Model	Higgs strahlung	Results	Conclusion
●00	00000000	00000000	00000	

1 Introduction

Inert Doublet Model

3 Higgs strahlung

4 Results

5 Conclusion

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへの

Université Abdelmalek Assaadi

Hamza Abouabid

Introduction	Inert Doublet Model	Higgs strahlung	Conclusion
000			

 A scalar particle with a mass of approximately 125 GeV was discovered in 2012^{1,2} by ATLAS and CMS that is so far compatible with SM Higgs boson ...

Hamza Abouabid

Introduction	Inert Doublet Model	Higgs strahlung	Conclusion
000			

- A scalar particle with a mass of approximately 125 GeV was discovered in 2012¹,² by ATLAS and CMS that is so far compatible with SM Higgs boson ...
- λ_{hhh} , λ_{hhhh} and $H \rightarrow Z\gamma$ are still not reached at the LHC.

¹ Phys.	Lett	В	716	(2012)	1-29
² Phys.	Lett	В	716	(2012)	30

Introduction	Inert Doublet Model	Higgs strahlung	Results	Conclusion
○●○	00000000	00000000	00000	000

- A scalar particle with a mass of approximately 125 GeV was discovered in 2012¹,² by ATLAS and CMS that is so far compatible with SM Higgs boson ...
- λ_{hhh} , λ_{hhhh} and $H \rightarrow Z\gamma$ are still not reached at the LHC.
- The need of new physics is motivated by : Dark matter, baryon asymmetry, neutrino masses, among other.

¹ Phys.	Lett B 716 (2012) 1-29
² Phys.	Lett B 716 (2012) 30

Introduction	Inert Doublet Model	Higgs strahlung	Results	Conclusion
0●0	00000000	000000000	00000	000

- A scalar particle with a mass of approximately 125 GeV was discovered in 2012¹,² by ATLAS and CMS that is so far compatible with SM Higgs boson ...
- λ_{hhh} , λ_{hhhh} and $H \rightarrow Z\gamma$ are still not reached at the LHC.
- IDM can describe dark matter.
- The need of new physics is motivated by : Dark matter, baryon asymmetry, neutrino masses, among other.
- Future generation of e^+e^- colliders will provide clean environment and precised measurement.

```
<sup>1</sup>Phys. Lett B 716 (2012) 1-29
<sup>2</sup>Phys. Lett B 716 (2012) 30
```

Université Abdelmalek Assaadi

Introduction	Inert Doublet Model	Higgs strahlung	Results	Conclusion
00●	00000000	00000000	00000	000
Motivations				

• The high precision measurement at ILC ³.

³T. K. Nelson,SLAC–PUB–12246

Hamza Abouabid

hamza.abouabid@gmail.com

Université Abdelmalek Assaadi

Introduction	Inert Doublet Model	Higgs strahlung	Results	Conclusion
00•	00000000	000000000	00000	000
Motivations				

- The high precision measurement at ILC 3 .
- The $e^+e^- \to h^0 Z$ dominates near the production threshold for ILC@250 .

³T. K. Nelson,SLAC–PUB–12246

Hamza Abouabid

Introduction ○○●	Inert Doublet Model	Higgs strahlung 00000000	Results 00000	Conclusion
Motivations				

- The high precision measurement at ILC ³.
- The $e^+e^- \to h^0 Z$ dominates near the production threshold for ILC@250 .
- The range of radiative corrections to Higgsstrahlung in IDM is in the same range of the precision measurement at ILC.
- The Higgs boson mass can be precisely measured independently of the decay modes by using the recoil mass spectrum against the ${\it Z}$

Université Abdelmalek Assaadi

³T. K. Nelson,SLAC–PUB–12246

Inert Doublet Model ●0000000	Higgs strahlung 00000000	Results 00000	Conclusion

1 Introduction

2 Inert Doublet Model

B Higgs strahlung

4 Results

5 Conclusion

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Université Abdelmalek Assaadi

Hamza Abouabid

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	0●000000	00000000	00000	000
Inert Higgs	Model			

 Inert two Higgs Doublet Model (IDM, or i2HDM) was introduced at by Deshpande and Ma (1978), about same time as 2HDM.

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	0●000000	00000000	00000	000
Inert Higgs	Model			

 Inert two Higgs Doublet Model (IDM, or i2HDM) was introduced at by Deshpande and Ma (1978), about same time as 2HDM.

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	0●000000	00000000	00000	000
Inert Higgs	Model			

- Inert two Higgs Doublet Model (IDM, or i2HDM) was introduced at by Deshpande and Ma (1978), about same time as 2HDM.
- Extensively used also to explain Dark matter of the universe.

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	00●00000	00000000	00000	000
Inert Higgs	Model			

• The IDM consist of the SM, including its Higgs doublet $\Phi_1 = \begin{pmatrix} 0 \\ (v+h)/\sqrt{2} \end{pmatrix} \text{ and an additional Lorentz scalar SU(2)}$ doublet $\phi_2 = \begin{pmatrix} H^+ \\ (H^0 + A^0)/\sqrt{2} \end{pmatrix}$.

Université Abdelmalek Assaadi

イロト イヨト イヨト

Hamza Abouabid

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	00●00000	00000000	00000	000
Inert Higgs	Model			

- The IDM consist of the SM, including its Higgs doublet $\Phi_1 = \begin{pmatrix} 0 \\ (v+h)/\sqrt{2} \end{pmatrix} \text{ and an additional Lorentz scalar SU(2)}$ doublet $\phi_2 = \begin{pmatrix} H^+ \\ (H^0 + A^0)/\sqrt{2} \end{pmatrix}$.
- The difference between IDM and the General Two Higgs Doublet Model is its potential has an exact (unbroken by the vacuum state) discrete symmetry Z_2 .

 Z_2 symmetry : $\Phi_1 \iff \Phi_1, \Phi_2 \iff -\Phi_2$.

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	00●00000	00000000	00000	000
Inert Higgs	Model			

• The IDM consist of the SM, including its Higgs doublet

 $\Phi_1 = \begin{pmatrix} 0 \\ (v+h)/\sqrt{2} \end{pmatrix} \text{ and an additional Lorentz scalar SU(2)}$ doublet $\phi_2 = \begin{pmatrix} H^+ \\ (H^0 + A^0)/\sqrt{2} \end{pmatrix}$.

 The difference between IDM and the General Two Higgs Doublet Model is its potential has an exact (unbroken by the vacuum state) discrete symmetry Z₂.

 Z_2 symmetry : $\Phi_1 \Longleftrightarrow \Phi_1, \Phi_2 \Longleftrightarrow -\Phi_2$.

• Z_2 guarantees the absence of the couplings between the SM fermions and inert doublet Φ_2 : no FCNC.

Université Abdelmalek Assaadi

A D F A P F A A D F A P F

Inert Doublet Model	Higgs strahlung	Results	Conclusion
00000000	00000000	00000	000

$$\begin{split} V = & \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \lambda_1^2 |\Phi_1|^4 + \lambda_2^2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 \\ & + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \{ (\Phi_1^{\dagger} \Phi_2)^2 + h.c \}, \end{split}$$

・ロ・・日・・日・・日・ うくの

Université Abdelmalek Assaadi

Hamza Abouabid

Inert Doublet Model	Higgs strahlung	Results	Conclusion
000●0000	00000000	00000	000

$$\begin{split} V = & \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \lambda_1^2 |\Phi_1|^4 + \lambda_2^2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 \\ & + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \{ (\Phi_1^{\dagger} \Phi_2)^2 + h.c \}, \end{split}$$

• The parameter λ_i are all real.

Université Abdelmalek Assaadi

< □ > < 同

Hamza Abouabid

Inert Doublet Model	Higgs strahlung	Results	Conclusion
00000000	000000000	00000	000

$$\begin{split} V = & \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \lambda_1^2 |\Phi_1|^4 + \lambda_2^2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 \\ & + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \{ (\Phi_1^{\dagger} \Phi_2)^2 + h.c \}, \end{split}$$

- The parameter λ_i are all real.
- The news scalar Boson are : H^0 , A^0 , H^+ and H^- , their masses are given by:

$$m_{h^0}^2 = -2\mu_1^2 = 2\lambda_1 v^2; \quad m_{H^0}^2 = \mu_2^2 + \lambda_L v^2$$
$$m_{A^0}^2 = \mu_2^2 + \lambda_S v^2; \quad m_{H^\pm}^2 = \mu_2^2 + \frac{1}{2}\lambda_3 v^2$$
(1)

Hamza Abouabid

Inert Doublet Model	Higgs strahlung	Results	Conclusion
00000000	000000000	00000	000

$$\begin{split} V = & \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \lambda_1^2 |\Phi_1|^4 + \lambda_2^2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 \\ & + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \{ (\Phi_1^{\dagger} \Phi_2)^2 + h.c \}, \end{split}$$

- The parameter λ_i are all real.
- The news scalar Boson are : H^0 , A^0 , H^+ and H^- , their masses are given by:

$$m_{h^0}^2 = -2\mu_1^2 = 2\lambda_1 v^2; \quad m_{H^0}^2 = \mu_2^2 + \lambda_L v^2$$

$$m_{A^0}^2 = \mu_2^2 + \lambda_S v^2; \quad m_{H^\pm}^2 = \mu_2^2 + \frac{1}{2}\lambda_3 v^2$$
(1)

• After minimisation: we left with 7 Free parameters. v and M_h are fixed \Rightarrow 5 free parameters μ_2^2 , λ_2 , M_{H^0} , M_{A^0} and $M_{H^{\pm}}$.

	Inert Doublet Model 0000000	Higgs strahlung 00000000	Results 00000	Conclusion
Constraints Theoretical constr	raints			

• Vacuum Stability :

$$\lambda_{1,2} > 0, \lambda_3 + \lambda_4 + |\lambda_5| + 2\sqrt{\lambda_1 \lambda_2} > 0 \tag{2}$$

- Perturbativity and unitarity
- Charge breaking minima: The conservation of the neutral charge of the vacuum can be reached by imposing :

$$\lambda_4 - |\lambda_5| \le 0 \tag{3}$$

	Inert Doublet Model 00000●00	Higgs strahlung 00000000	Results 00000	Conclusion 000
Constraints				
Eveneringentel	oo watwa in ta			

- Contraints from Higgs data at LHC : In our analysis we toke into account two constraints from LHC data
 - $h^0 \rightarrow \gamma \gamma$
 - $Br(h^0 \rightarrow invisible) < 11\%$ at 95% CL
- Direct search from LEP : These constraints are summarized as follows :
 - $m_{H^+} > 80 GeV$
 - $Max(m_{A^0}, m_{H^0}) > 100 GeV$
 - $m_{A^0} + m_{H^0} > m_Z$ and $m_{A^0} + m_{H^{\pm}} > m_W$
- Electro Weak Precision : these constraints require a small split between charge Higgs mass and one of the heavy neutral Higgs $m_{H^+} \simeq m_{H^0}$ or $m_{H^+} \simeq m_{A^0}$.
- DM relic density, direct, indirect and collider searche

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	000000●0	00000000	00000	000
Constraints				

Allowed Parameter space

Figure 1: Allowed parameter space in the degenerate IDM spectra are shown, where the various theoretical constraints and experimental bounds.

Inert Doublet Model	Higgs strahlung	Conclusion
0000000		

Constraints Allowed Parameter space

Figure 2: Allowed parameter space in the non-degenerate IHDM spectra satisfying all theoretical and experimental constraints are shown.

Hamza Abouabid hamza.abouabid@gmail.com

Inert Doublet Model 0000000	Higgs strahlung ●00000000	Results 00000	Conclusion

1 Introduction

Inert Doublet Model

3 Higgs strahlung

Leading-order Next-to-leading-order

4 Results

5 Conclusion

- * ロ > * 個 > * 目 > * 目 > - 目 * つへの

Université Abdelmalek Assaadi

Hamza Abouabid

Introduction 000	Inert Doublet Model	Higgs strahlung O●0000000	Results 00000	Conclusion 000
Higgs strah Motivation	lung			

• By using the recoil mass spectrum against the Z, the Higgs boson mass can be precisely measured independently of the decay modes.

	Inert Doublet Model 00000000	Higgs strahlung ○○●○○○○○○	Results 00000	Conclusion
Leading-order				

1 Introduction

Inert Doublet Model

3 Higgs strahlung Leading-order Next-to-leading-order

4 Results

5 Conclusion

- * ロ > * 個 > * 目 > * 目 > - 目 * つへの

Université Abdelmalek Assaadi

Hamza Abouabid

	Inert Doublet Model 0000000	Higgs strahlung ०००●०००००	Results 00000	Conclusion
Leading-order				
$e^+e^- o H^+$ Leading Order	· <i>H</i> ⁻			

• The Higgs Strahlung at tree level both in *SM* and *IDM* is leading by the same Feynman diagram .

	Inert Doublet Model 0000000	Higgs strahlung ०००●०००००	Results 00000	Conclusion 000
Leading-order				
$e^+e^- ightarrow H^+$ Leading Order	·H ⁻			

- The Higgs Strahlung at tree level both in *SM* and *IDM* is leading by the same Feynman diagram .
- The dynamic of the Higgs Strahlung processes is driven at leading order by the tree-level interaction Lagrangian

$$\mathscr{L}_{Z^0 Z^0 h^0} = \frac{eM_Z}{s_w c_w} g^{\mu\nu} Z^0_{\mu} Z^0_{\nu} h^0 \tag{4}$$

	Inert Doublet Model	Higgs strahlung	Conclusion
		00000000	
Next-to-leading-order			

1 Introduction

Inert Doublet Model

Higgs strahlung Leading-order Next-to-leading-order

4 Results

5 Conclusion

- ▲ 日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

Université Abdelmalek Assaadi

Hamza Abouabid

	Inert Doublet Model 00000000	Higgs strahlung ○○○○●○○○	Results 00000	Conclusion 000
Next-to-leading-order				
Higgs Strahlu NLO - ON-Shell F	ng Renormalization			

• In this work we used the On-shell renormalization scheme

Université Abdelmalek Assaadi

Hamza Abou<u>abid</u>

Introduction	Inert Doublet Model	Higgs strahlung	Results	Conclusion	
Next to leading order	0000000	00000000	00000	000	
Higgs Strahlung					
NLO - ON-Shell Renormalization					

- In this work we used the On-shell renormalization scheme
- We redefine the Higgs field and masses as follows We redefine the Higgs fields and masses as follows:

$$h \rightarrow Z_h^{1/2} h = (1 + \frac{1}{2}\delta Z_h)h$$
$$m_h^2 \rightarrow m_h^2 + \delta m_h^2$$
(5)

	Inert Doublet Model	Higgs strahlung		Conclusion	
		00000000			
Next-to-leading-order					
Higgs Strahlung					
NLO - ON-She	Il Renormalization				

- In this work we used the On-shell renormalization scheme
- We redefine the Higgs field and masses as follows We redefine the Higgs fields and masses as follows:

$$h \rightarrow Z_h^{1/2} h = (1 + \frac{1}{2} \delta Z_h) h$$
$$m_h^2 \rightarrow m_h^2 + \delta m_h^2$$
(5)

Inserting these redefinitions into the above Lagrangian we obtain the conter-term for the ZZh⁰ diagrams :

$$\delta \mathscr{L}_{ZZh^{0}} = i \frac{em_{W}}{s_{W}c_{W}^{2}} (\delta Z_{e} + \frac{\delta Z_{H^{0}}}{2} + \delta Z_{ZZ} - \frac{\delta s_{W}(c_{W}^{2} - 2s_{W}^{2})}{c_{W}^{2}s_{W}} + \frac{\delta m_{W}^{2}}{2m_{W}^{2}}) Z^{\mu} Z_{\mu} h^{0}$$
(6)

Hamza Abouabid

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	00000000	○○○○○○●○○	00000	000
Next-to-leading-order				

Figure 3: Some interesting Feynman diagrams .

Hamza Abouabid

hamza.abouabid@gmail.com

Université Abdelmalek Assaadi

Introduction 000	Inert Doublet Model 00000000	Higgs strahlung ○○○○○○○○	Results 00000	Conclusion 000
Next-to-leading-order				
Higgs Strah Next-to-leading	lung -order			

• At one-loop order, the cross section can be obtained by the interference of tree level diagrams and those arising at the one-loop.

$$\mathcal{M} = \mathcal{M}_{tree} + \mathcal{M}_{loop} \tag{7}$$

Hamza Abouabid

	Inert Doublet Model	Higgs strahlung	Conclusion
		00000000	
Next-to-leading-orde			
Higgs Strak	nlung		
Next-to-leadin	ig-order		

The total cross section at NLO, σ^{NLO} , is the sum of LO cross section σ^0 , and NLO corrections σ^1 , namely

$$\sigma^{NLO} = \sigma^0 + \sigma^1 \equiv \sigma^0(1 + \Delta), \qquad (8)$$

where Δ is the relative correction. Thus Δ can be decomposed into two gauge-invariant parts,

$$\Delta = \Delta_{\text{weak}} + \Delta_{\text{QED}} \tag{9}$$

In order to illustrate the pure effect of IHDM radiative corrections , we define the following ratio given as:

$$\delta = \frac{\sigma_{Zh^0}^{IHDM} - \sigma_{Zh^0}^{SM}}{\sigma_{Zh^0}^{SM}}$$
(10)

Hamza Abouabid

Université Abdelmalek Assaadi

Inert Doublet Model 00000000	Higgs strahlung 00000000	Results ●0000	Conclusion

1 Introduction

Inert Doublet Model

3 Higgs strahlung

5 Conclusion

- * ロ * * 個 * * 注 * * 注 * - 三 * の < ?

Hamza Abouabid

Inert Doublet Model	Higgs strahlung	Results	Conclusion
00000000	00000000	0●000	000

Results Scenarios and their conditions.

	Sc I	Sc II	Sc III	Sc IV	Sc V
Theoretical constraints	1	 Image: A set of the set of the	1	 Image: A set of the set of the	 Image: A second s
Degenerate spectrum	1				
Higgs Data	1	1	1	1	 Image: A start of the start of
Higgs Invisible decay open				 Image: A set of the set of the	 Image: A set of the set of the
Direct searches from LEP	1	 Image: A set of the set of the	1	 Image: A set of the set of the	 Image: A start of the start of
Electroweak precision tests	1	 Image: A set of the set of the	1	1	 Image: A second s
Dark matter constraints			1		 Image: A start of the start of

Table 1: Scenarios and their conditions.

æ

イロト イロト イヨト

Introduction	Inert Doublet Model	Higgs strahlung	Results	Conclusion
000	00000000	00000000	00●00	000
Results				

Angular distribution.

Figure 4: Angular distribution with three different collision energies: $\sqrt{s} = 250$ and 500 GeV .

Hamza Abouabid

hamza.abouabid@gmail.com

< □ > < 同 >

Figure 5: The results for new physics contribution to $e^+e^- \rightarrow Zh^0$ for collision energies 250 and 500 GeV, are shown for Scenario I, III respectively from upper panels to lower panels.

Hamza Abouabid

Inert Doublet Model	Higgs strahlung	Results	Conclusion
00000000	00000000	0000●	000

Results

Figure 6: The results for new physics contribution to $e^+e^- \rightarrow Zh^0$ for collision energies 250,500 GeV, are shown for Scenario IV in the upper panels and V in the lower one.

Hamza Abouabid

Inert Doublet Model	Higgs strahlung	Results	Conclusion
00000000	00000000	00000	●00

1 Introduction

Inert Doublet Model

B Higgs strahlung

4 Results

|▲□▶ ▲□▶ ▲臣▶ ▲臣▶ | 臣|||のへの

Hamza Abouabid

	Inert Doublet Model	Higgs strahlung	Results	Conclusion
	00000000	00000000	00000	⊙●⊙
Results				

- After all constraints we can still find a significant contribution of new physics bigger than two percent $\delta \sigma \geq 2$.
- At 250 GeV and 500GeV the radiative correction of the Higgs Strahlung process are not bigg enough to be significant at ILC but they will be more useful at FCC-ee and CEPC .

Inert Doublet Model	Higgs strahlung	Conclusion
		000

Thank you!

Université Abdelmalek Assaadi

Hamza Abouabid