

First Pan-African Astro-Particle and Collider Physics Workshop

Dark photon searches with the ATLAS detector at the LHC

By fitting a theoretical model of the composition of the universe to the combined set of cosmological observations:

Rubin and Ford (1970); Roberts and Whitehurst (1975); Rubin, Thonnard and Ford (1980); Bosma (1981)

- Hypothetical collection of fields and particles predicted as possible Standard Model extensions.
- No direct interactions with the particles of the Standard Model (SM).
- Couples extremely weakly to SM particles through mediating particles such as dark photons, axions, or sterile neutrinos.

How to search for Dark Sectors

Gravitational Interactions

non-trivial DM interactions can affect small-scale structure

Scattering or Absorption

recoil energies typically smaller than WIMPs

Galactic-Scale Observables

self-interactions can occur near centers of galaxies

Production

Either in colliders or beam-dump experiments

It's detection?

Dark photons (γ_D , Z_D or $A^{'}$) are neutral light vector gauge bosons which kinetically mix with the SM photon with a mixing strength.

A dark sector mediator.

connect to dark sector.

- Vector portal: Kinetic mixing of γ_D with the SM photon (ϵ) by adding a U(1)¹/₂
- Higgs portal: Add dark scalar singlet (S) that spontaneously breaks U(1) and mixes with SM Higgs.
- More exotic portals: hidden valley sectors, neutrinos, dark SUSY,

- Visible: decays to SM particles
- Invisible: decays can include dark matter particles

Kinetic mixing

- If generated by 1 loop corrections, $\epsilon \sim 10^{-3} 10^{-1}$
- If generated by 2 loop corrections, $\epsilon \sim 10^{-7} 10^{-3}$

Lifetime

• Small ϵ value => long γ_D lifetime: γ_D decays at a macroscopic distance from its production point

$$au(\gamma_D) \propto rac{1}{m(\gamma_D)\epsilon^2}$$

Calorimeter

Inner Detector

46 m

Magnet System

25 m

BSM searches with ATLAS

- signatures:
- Three main channels are presented:
 - Light long-lived neutral particles decaying into displaced collimated leptons or light hadrons. $(36.1 fb^{-1})$
 - arXiv:2110.13673

Eur. Phys. J. C 80 (2020) 450

- Higgs boson decay into new spin-0 or spin-1 particles in four-lepton states. (Full LHC Run 2: $139 \ fb^{-1}$)
 - Eur. Phys. J. C 82 (2022) 105
- Higgs boson decay to a photon and a dark photon (Full LHC Run 2: $139 fb^{-1}$)

What is Dark

Photon?

Higgs to long-lived dark photons

DS and SM couple via a vector portal

FRVZ model used as benchmarks

adding an extra U(1) symmetry and scalar, introduces two dark fermions, a dark photon and a hidden scalar (Hidden lightest stable particle)

 $m_{\gamma} = 400 \text{ MeV}$ $\sigma \times B = 5 \text{ pb}$ ···· expected limit **ATLAS** observed limit $36.1 \text{ fb}^{-1} \sqrt{s} = 13 \text{ TeV}$ expected $\pm 2\sigma$ expected $\pm 1\sigma$ 10 Dark photon cτ [mm]

hDPJ-hDPJ channel

 $m_{H} = 800 \text{ GeV}$

μDPJ–μDPJ Background: cosmic rays muons

Run 1 and partial Run 2 combined results assuming branching ratios from 1% to 20%

This search resulted in an exclusion region at 90% CL as a function of the γD mass and of the kinetic mixing parameter ϵ

Higgs to dark photons in four-lepton final state

- Search strategy:
 - Look for higgs production of dark photons
 - ullet photon portal: Z mixing with Z_D
 - higgs portal: mixing of SM H with dark H (S) via mixing parameter κ
 - 4 lepton signature, require (m_{4L} consistent with 125 GeV)
 - photon portal: require m_{12} consistent with Z, look for dilepton resonance above H—> ZZ* background
 - higgs portal: require consistent mass for two di-lepton pairs

 Results presented in terms of BR of Higgs to new sates, assuming SM production of H

Higgs portal through k (HM, LM)

hypercharge portal through ϵ

• An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at $0.018~(0.017_{+0.007-0.005})$, assuming the Standard Model production cross-section for a 125 GeV Higgs boson.

• The most powerful discriminating variable:

$$m_T(\gamma, E_T^{miss}) = \sqrt{2 p_T E_T^{miss} \left[1 - \cos(\phi_\gamma - \phi_{E_T^{miss}})\right]}$$

New results expected in 2022

Summary

- Both astrophysical and terrestrial searches needed to uncover complete dark matter model.
- No significant excess of events above SM background prediction with the current LHC Run 2 data.
- Upper limits at 95% CL are set on model-independent fiducial cross-sections and on the Higgs boson decay branching ratios to vector and pseudoscalar bosons.
- Limits on the production cross-section times branching fraction as a function of the proper decay length of γ_D

