

FACULTE DES SCIENCES AIN CHOCK UNIVERSITE HASSAN II DE CASABLANCA

The ATLAS Inner Detector trigger design and performance during Run 2 data taking from the 13 TeV LHC collisions

Soufiane Zerradi

Hassan II University, Faculty of Sciences Ain Chock

23-03-22

The ATLAS Inner Detector (ID)

- The ID is the ATLAS sub-detector dedicated to track and vertex reconstruction, It consists of 3 subsystems:
- Pixel Detector closest to the beamline
 and the Interaction Point (IP) :
 - \rightarrow 3 layers of barrel and endcap silicon pixel modules
 - \rightarrow Insertable B layer (IBL) 1 Barrel layer added for LHC Run 2
- Semiconducting Tracker (SCT) :
 - \rightarrow 4 barrel and 9 endcap layers of silicon microstrip modules
- Transition Radiation Tracker (TRT) :
 - \rightarrow Barrel and endcap modules of thinwalled drift tubes

The ATLAS Trigger system design – Run 2

- The ATLAS Trigger system Run 2 consists of:
- Level-1 (L1): hardware-based pipelined trigger using coarse granularity data from the calorimeter, and muon spectrometer to identify Regions of Interest (RoIs) → reduction to only 2-6% of the data volume to be processed by the HLT for each event
 - High Level Trigger (HLT): software based; each L1 RoI used to seed full granularity reconstruction → first place ID information is available
 - For Run 2, the previous two run 1 software stages (L2 and EF) were merged into a single High Level Trigger (HLT) stage → Dataflow simplification, no need to request data twice, common storage and data preparation

٠

٠

The ATLAS ID Trigger design – Run 2

- The ID Trigger : is part of HLT system. It processes information from the ID to reconstruct tracks and vertices → customised for each physics signature – electron, muon, tau and b-jet candidates
- Various methods are used to ensure speed while keeping good performance
- Spatial Regions of Interest (RoIs) allow tracking and vertexing in reduced volumes
- Tracking is split into:
- FastTrackFinder (FTF) algorithm that produces fast but low quality track
- Precision Tracking (PT) algorithm which processes tracks and clusters from the first stage, and improves their quality while applying tighter requirements
- The single stage tracking approach as used in Run 1 is the baseline strategy
- Added for LHC Run 2, Multi-stage RoI methods define multiple RoIs in sequence to allow for reduced RoI volumes, tailored for different stages of tracking and vertexing

The ATLAS ID Trigger design – Run 2

- RoI sizes can be reduced by using multiple RoIs in sequence, reducing latency of track finding
- Two-stage tracking approach:
 - \rightarrow Performs initial FTF tracking in RoI with large range along beamline, but narrow width in ϕ and pseudorapidity η
 - \rightarrow Determines track or vertex of interest
 - \rightarrow Seeds second RoI around this position, with narrower range along beamline, but widened in ϕ and pseudorapidity η
 - \rightarrow Performs FTF in second RoI, followed by Precision Tracking
- Employed in jet and hadronic-decay tau triggers, where z-position of the primary vertex is not known from L1 information

The ATLAS ID Trigger – Run 2 : timing performance

- Processing times per RoI for the FastTrackFinder (left) and Precision Tracking (right) algorithms for the tau trigger. The mean number of interactions per bunch-crossing (pile-up) was <µ> ~ 14.
- The data were taken during 13 TeV LHC collisions in August 2015 with a 25 ns bunch spacing.
- The single stage tracking approach as used in Run 1 is shown by the black dotted line.
- The two-stage tracking approach used in Run 2 is shown by the solid red and dashed blue lines.
- Tau trigger average timing reduced by implementing multi-stage tracking.

The ATLAS ID Trigger – Run 2 : pile-up performance

- Efficiency of ID trigger track reconstruction for offline medium quality muons with p_T > 13 GeV (left) and offline medium quality 1-prong tau candidates with E_T > 25 GeV (right) as a function of the mean number of interaction per bunch-crossing (pile-up) <μ> . Statistical, Bayesian uncertainties are shown.
- The data were taken during 13 TeV LHC collisions in 2018.
- The single stage tracking approach is used for the muon signature.
- The two-stage tracking approach is used for the tau signature.
- Efficiency close to 100% and flat with increasing pile-up for both signatures.

The ATLAS ID Trigger – Run 2 : muon performance

- Efficiency of ID trigger track reconstruction for offline medium quality muons with $p_{\tau} > 13$ GeV as a function of pseudo-rapidity η (left) and transverse momentum, p_{τ} (right). Statistical, Bayesian uncertainties are shown.
- The single stage approach is used here.
- The data used here correspond to the full 2018 integrated luminosity.
- Efficiencies are approximately ~100%.

The ATLAS ID Trigger – Run 2 : tau performance

- Efficiency of ID trigger track reconstruction for offline medium quality 1-prong tau candidates with E_τ > 25 GeV as a function of pseudo-rapidity η (left) and transverse momentum, p_τ (right). Statistical, Bayesian uncertainties are shown.
- The two-stage tracking approach is used here.
- The efficiency is evaluated with a 25 GeV tau trigger.
- Both efficiencies close to 100%.

The ATLAS ID Trigger – Run 2 : electron and b-jet performance

- Efficiency of ID trigger track reconstruction for tracks from offline tight quality electron candidates as a function of the offline electron transverse energy (ET) with E_τ > 15 GeV (left) and for tracks from offline b-jet candidates as function of offline track p_τ (right). Statistical, Bayesian uncertainties are shown.
- For the b-jet triggers, the ID reconstruction runs in two stages :
- The first stage runs a fast vertex tracking stage for tracks in η and φ around the jet axis for each jet but extended along the interaction region at the beamline, and with a higher transverse momentum (p_T> 5 GeV).
- The second stage runs the FTF algorithm in a wider region about the jets but with a tight selection about the z position of the vertex identified in the first stage, followed by the PT algorithm.
- Efficiency is excellent using FTF and PT algorithms and is evaluated with a 15 GeV electron trigger for electrons and 55 GeV b-jet trigger with offline track p_T > 1 GeV for b-jet candidates.

Conclusion and outlook

- The LHC delivered record high instantaneous luminosity and pile-up Levels during 2018 data taking. The ATLAS Inner Detector tracking trigger has performed well under these extreme conditions due to improvements made during the 2013-2015 Shutdown.
- The multiple RoIs methods in sequence reduced latency of track finding.
- The performance of the tracking for muons, taus, electrons and b-jets has been shown to be excellent with efficiencies close to 100% and flat with increasing pile-up.
- For Run 3, the trigger is being redesigned to cope with future running conditions, to maintain or improve upon the superb performance from Run 2.
- These developments include multi-threaded trigger reconstruction.

Backup

Super-Rol

- Added for LHC Run 2, RoI overlap can be avoided by combining RoIs :
 - Super RoI:

٠

 \rightarrow Defines RoIs with large range along beamline, but narrow width in ϕ and pseudorapidity, and combine into a single region

 \rightarrow Performs tracking and vertexing over the combined region

 \rightarrow Avoids multiple processing and double counting of tracks that could occur when using multiple RoIs

Super-Rol

Employed in b-jets triggers, along with two-stage tracking :

 \rightarrow Performs initial FTF tracking in Super RoI defined around jets passing L1 trigger

→ Performs primary vertex reconstruction using Super RoI track collection

 \rightarrow Defines individual secondary RoIs around jets, originating from the primary vertex

 \rightarrow Performs FTF in secondary RoIs, followed by Precision Tracking, and secondary vertexing needed for b-hadron tagging

Pseudorapidity- ϕ plane

٠

Full-Scan approach

- In order to reconstruct all tracks from some signatures,e.g. taus, b-jets and cosmics, we use :
 - Full-Scan approach :

 \rightarrow large RoIs covering huge or total volume of ID were required leading to high processing times for the trigger tracking in these cases.

٠

 https://link.springer.com/article/10.1140/epjc/s10052-021-0992 0-0