First Pan-African Astro-Particle and Collider Physics Workshop 21-23 March 2022

Monte-Carlo Simulation and Measurement Of Gamma Ray Attenuation in Concrete

Joshua Pondo & Dr. Nadir Hashim

Kenyatta University-Kenya

THE PRESENTATION OUTLINE

- **1. Introduction**
- **2. The Measurement**
- **3. GEANT4-Based Simulation**
- 4. Analysis
- 4. Conclusions

INTRODUCTION The background information

- Gamma ray attenuation is the reduction in gamma ray intensity as it passes through a material.
- This is mainly via the processes
 - i. Photoelectric effect.
 - ii. Compton effect.
 - iii. Pair production.
- These processes predominates in different photon energy ranges as shown alongside.

Studied Attenuation Parameters

Linear attenuation coefficient
 Half Value Layer
 Mean Free Path
 Mass attenuation coefficient

- ★ Gamma ray attenuation studies: experimental and theoretical
- * Theoretical approaches: Monte Carlo simulation, Analytical
- ★ Monte Carlo simulation:
 - Statistical approach of deriving a macroscopic solution to a problem by the use
 - of random numbers.
 - ·Involves random sampling of probability distribution functions that describe the problem.
- *Some particle transport simulation codes: EGS, MCNP and FLUKA, GEANT4

GEANT4 APPLICATION

High Energy Physics

Nuclear Physics

Accelerator Physics

Medical Physics

Space science

Sample GEANT4 run output

Define simulation parameters: Geometry, magnetic Field, particle Definition, generation and Tracking, the physics process involved, visualization etc

The Measurement

The narrow beam transmission method used for measurement

The Measurement

The following is the **spectrum** obtained from the NaI(Tl) at the ROI region for both attenuated and unattenuated gamma ray beam.

Simulated and Measured Intensity variation with concrete Thickness

INTENSITY (cpr	n)	Natural logarithm of (I/Io)		
GEANT4 Simulation	Measurement	GEANT4 Simulation	Measurement	
1168089	1168089±497	0.0000	0.0000±0.0006	
814987	865861±445	-0.3600	-0.2993±0.0007	
569724	632546±386	-0.7181	-0.6134±0.0007	
397033	473300±340	-1.0791	-0.9034±0.0007	
277608	345657±327	-1.4367	-1.218±0.001	
194101	186341±234	-1.7946	-1.836±0.001	
135849	140685±210	-2.1516	-2.117±0.002	
	INTENSITY (cpr GEANT4 Simulation 1168089 814987 569724 569724 397033 277608 194101 135849	INTENSITY (cpm) GEANT4 Measurement Simulation 1168089 1168089 1168089±497 814987 865861±445 569724 632546±386 397033 473300±340 277608 345657±327 194101 186341±234 135849 140685±210	INTENSITY (cpm) Natural loga GEANT4 Measurement GEANT4 Simulation 1168089±497 0.0000 814987 865861±445 -0.3600 569724 632546±386 -0.7181 397033 473300±340 -1.0791 277608 345657±327 -1.4367 194101 186341±234 -1.7946 135849 140685±210 -2.1516	

The Linear Attenuation Coefficient

- This is the fraction of the incident photon beam intensity that a unit thickness of the material is able to absorb as the beam passes through it.
- We let I be the intensity of photons which pass through a thickness x of material, with Io the intensity of incident photon. The intensity of photons that interact in an additional thickness dx is -dI. We can write:
- which when integrated and rearranged gives
- I = lo exp (-μx)
- or Ln (I/Io)= -μx

- where I=Transmitted Intensity, Io=Incident Intensity, x is the concrete thickness and μ is the Linear Attenuation Coefficient,
- The obtained value of μ was 0.179/cm and (0.182±0.006)/cm from simulation and measurement respectively.

The simulated and measured Linear attenuation coefficient

Comparison of obtained value of Linear attenuation coefficient of ordinary concrete for gamma rays of energy 662 keV with the published ones

This work in	n /cm	Published works in /cm					
Simulation	Measurement	Singh et al. (2008)	Demir et al. (2011)	Fugaru et al. (2015)	Al-Bayati (2004)	Singh et al. (2014)	Shirmardi et al. (2008)
0.179	0.182± 0.006	0.1799± 0.0034	0.1855± 0.0015	0.167	0.163	0.175	0.197

Comparison of Linear Attenuation Coefficients of this work with published data

The Half Value Layer

- **The Half Value Layer** is the thickness of the material that reduces the intensity of the gamma photon beam to half its original value.
- This is given by

 $HVL = Ln2/\mu \quad \qquad 4$

where μ is the Linear Attenuation Coefficient.

- The Half Value Layer obtained in this work are presented below
 H.V.L = (3.81±0.13) cm (Measurement)
 - H.V.L = 3.87 cm (Simulation)

Comparison of obtained value of the Half Value Layer of ordinary concrete for gamma rays of energy 662 keV with the published ones

This work in	n cm	Published works in cm					
Simulation	Measurement	Singh et al. (2008)	Demir et al. (2011)	Fugaru et al. (2015)	Al-Bayati (2004)	Singh et al. (2014)	Shirmardi et al. (2008)
3.87	3.81±0.13	3.853± 0.073	3.737± 0.030	4.15	4.25	3.96	3.52

Comparison of Half Value Layer of this work and published data

RESULTS AND DISCUSSION The simulated and the measured Mean Free Path

• The Mean Free Path is the average distance a single particle travels

through a given attenuating medium before interacting. It is given by

 $X_m = 1/\mu$ 5

where μ is the Linear Attenuation Coefficient.

•Using the above obtained values of linear attenuation coefficient,

the Mean Free Path obtained in this work are presented below

 $X_m = (5.49 \pm 0.18) \text{ cm}$ (Measurement)

 $X_m = 5.59 \text{ cm}$ (Simulation)

Comparison of the obtained value of Mean Free Path of ordinary concrete for gamma rays of energy 662 keV with the published ones

This work in	n cm	Published works in cm					
Simulation	Measurement	Singh et al. (2008)	Demir et al. (2011)	Fugaru et al. (2015)	Al-Bayati (2004)	Singh et al. (2014)	Shirmardi et al. (2008)
5.59	5.49±0.18	5.559± 0.105	5.391± 0.040	5.99	6.13	5.71	5.08

Comparison of Mean Free Path of this work with published data

The Mass Attenuation Coefficient

- This is the measure of a material ability to absorb or scatter
 electromagnetic radiation per unit of mass. This attenuation eliminates
 the density dependence of the material on gamma ray attenuation.
- GEANT4 and XCOM codes were used for its simulation.
- It corresponds to the sum of the mass attenuation coefficient from

individual interactions as shown below.

$$\frac{\mu}{\rho} = \frac{\tau}{\rho} + \frac{\sigma}{\rho} + \frac{\kappa}{\rho}$$

Total Mass Attenuation Coefficient

ENERG Y (MeV)	Total Mass Attenuation Coefficient(cm2/g)			
	GEANT4	ХСОМ		
0.01	22.44	31.98		
0.03	0.9787	1.391		
0.06	0.2517	0.3005		
0.08	0.1891	0.2094		
0.1	0.1636	0.1742		
1	0.06441	0.06402		
5	0.02875	0.02914		
10	0.0228	0.02331		
30	0.02051	0.02129		
50	0.02113	0.0221		
80	0.02213	0.02328		
100	0.02268	0.02391		

Variation of the Total mass attenuation coefficient with energy.

RESULTS AND DISCUSSION Photoelectric Mass attenuation coefficient

ENERGY (MeV)	Photoelectric Effect(cm2/g)			
	GEANT4	ХСОМ		
0.01	22.31	31.85		
0.03	0.8189	1.234		
0.06	0.09344	0.1442		
0.08	0.03723	0.05831		
0.1	0.01827	0.02883		
1	0.00003	0.00005		
5	0	0.00004		
10	0	0.00002		
30	0	0		
50	0	0		
80	0	0		
100	0	0		

Simulated Photoelectric Mass attenuation coefficient variation with energy for XCOM and GEANT4 codes.

Photon Energy (MeV)

Photoelectric Mass Attenuation Coefficient

Photoelectric Mass Attenuation Coefficient, t/p is given by

Where N_A is the Avogadro's constant, Z is the atomic number, A atomic mass while $_a\tau$ is the total cross section per atom which is photon energy dependent as

The obtain decrease in Photoelectric mass attenuation coefficient with energy is in agreement with both Attix (1986) and Podgorsak (2005) who observed that Photoelectric mass attenuation coefficient decreases with energy.

The disagreement at low photon energy is attributed to adoption of different cross section data sources by the codes.

Compton mass attenuation coefficient

ENERGY (MeV)	Compton Effect (cm2/g)			
	GEANT4	ХСОМ		
0.01	0.1261	0.1216		
0.03	0.1599	0.1569		
0.06	0.1583	0.1563		
0.08	0.1519	0.1511		
0.1	0.1454	0.1454		
1	0.06439	0.06398		
5	0.02492	0.02515		
10	0.01533	0.01549		
30	0.006664	0.006699		
50	0.004437	0.004444		
80	0.003026	0.003019		
100	0.002517	0.002506		

The variation of Compton mass attenuation coefficient with photon energy

Compton Mass Attenuation Coefficient

Compton Mass Attenuation Coefficient, σ/ρ is given by

Where N_A is the Avogadro's constant, Z is the atomic number, A atomic mass while $_a\sigma$ is the total cross section per atom which is photon energy dependent as

The obtain decrease in Compton mass attenuation coefficient with energy is in agreement with both Attix (1986) and Podgorsak (2005) who observed that Compton mass attenuation coefficient decreases with energy.

Pair production mass attenuation coefficient

ENERGY (MeV)	Pair-Production(cm2/g)			
	GEANT4	ХСОМ		
0.01	0	0		
0.03	0	0		
0.06	0	0		
0.08	0	0		
0.1	0	0		
1	0	0		
5	0.003831	0.003881		
10	0.007472	0.007462		
30	0.01385	0.01365		
50	0.01669	0.01641		
80	0.0191	0.01875		
100	0.02016	0.01976		

The variation of Pair Production mass attenuation coefficient with energy

Pair production Mass Attenuation Coefficient

Pair production Mass Attenuation Coefficient, k/p is given by

Where NA is the Avogadro's constant, Z is the atomic number, A atomic mass while $a\kappa$ is the total cross section per atom.

It is a processes with a lower energy threshold given by the mass of an electron-positron pair, i.e 1.02 MeV

The obtain increase in Pair production mass attenuation coefficient with energy is in agreement with both Attix (1986) and Podgorsak (2005) who observed that Pair production mass attenuation coefficient increases with energy.

Mass attenuation coefficient

GEANT4

XCOM

CONCLUSIONS

The findings of this research showed that

- 1. From measurement, the attenuated fraction of intensity of gamma rays of energy 662 keV by ordinary concrete is (0.182±0.006) /cm while that from simulation is 0.179 /cm.
- 2. From measurement, the thickness of ordinary concrete that attenuates by half the intensity of gamma rays of energy 662 keV is (3.81 ± 0.13) cm while that from simulation is 3.87 cm.
- 3. From measurement, gamma rays of energy 662 keV travels an average distance of (5.49±0.18)cm in ordinary concrete before interacting with it while from simulation it travels an average distance of 5.59 cm.

4. The GEANT4 Simulated and XCOM simulated variation of mass attenuation coefficient of ordinary concrete with gamma ray energy in the range of 10 keV to 100 MeV was found to be in agreement except for the photoelectric mass attenuation coefficient at lower energies. This was attributed to the use of different cross section data sources in GEANT4 and XCOM.
5. The research findings have validated the use of GEANT4 program for the

study of gamma ray attenuation in matter.

Thank you very much...