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Heavy Ion Collisions

• Heavy ions (such as Pb+Pb) are accelerated to nearly the
speed of light.

• γ � 10 Lorentz factors; ’pancake nuclei’

• Collision with centers offset by impact parameter b

• Apparent formation of Quark Gluon Plasma (QGP) in collided
region

• Effective finite system size on the order of nucleus radii
∼ 5× 10−15m

• Highly non-trivial situation to describe
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Experimental Quark Gluon Plasma

• Present in first ∼ 0.000001 seconds after Big Bang

• Free color charge, hence ’plasma’

• Seems to behave like a liquid (highly correlated), not a gas
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What is this new phase in QCD?

• It is unclear what happens in QCD just above the transition
temperature T = 180 MeV

• For ’small’ (experimentally accessible temperatures
T ∼ 350MeV) the phase appears to be well described by
(strongly coupled) relativistic hydrodynamics under certain
assumptions, and crucially dependent on lattice QCD
calculations
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Lattice QCD

• Lattice QCD is a non-peturbative approach to QCD

• When performing computer Lattice QCD simulations, it is
essentially a ‘black-box’

• It is often then unclear what the effect of certain assumptions
are on the result of a computation



Background The ’New Phase’ in QCD The Problem Our work

Lattice QCD

• Lattice QCD is a non-peturbative approach to QCD

• When performing computer Lattice QCD simulations, it is
essentially a ‘black-box’

• It is often then unclear what the effect of certain assumptions
are on the result of a computation



Background The ’New Phase’ in QCD The Problem Our work

Lattice QCD

• Lattice QCD is a non-peturbative approach to QCD

• When performing computer Lattice QCD simulations, it is
essentially a ‘black-box’

• It is often then unclear what the effect of certain assumptions
are on the result of a computation



Background The ’New Phase’ in QCD The Problem Our work

The role of Lattice QCD in viscosity calculations

• Using Lattice QCD with various assumptions (including
infinite system size) we can calculate the trace anomaly in
these heavy ion collisions

• Using this trace anomaly, one can calculate the equation of
state of the relativistic hydrodynamic system one imagines to
describe the system

• One then arrives at a very low value of viscosity, as a
consequence of the equation of state
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The Problem

• How do various parameters that differ from the ideal simple
case in the Lattice calculation impact this trace anomaly?

• Any effect that have an impact on the ‘effective’ coupling will
also affect the trace anomaly

• How large then is each effect on the trace anomaly?
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Where we fit in

• An obvious place to check for deviations from the ideal case is
in the finite size of the system present in experiments

• Such finite size systems introduce non-trivial topology, as well
as a discretization of momentum modes.
• The finite system size requires new mathematical methods to

properly tackle
• The finite size calculation in QCD is highly non-trivial
• First develop the necessary mathematical tools and intuition

in a simple case
• Consider periodic boundary conditions and φ4 theory
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From integrals to sums

∫
d3p −→

∑
Λ

• With periodic boundary conditions, our momentum space
goes from R3 to some 3 dimensional lattice Λ, where the
lattice spacings in each direction is the inverse of the length
scale of that finite dimension

• In such discrete momentum spaces, standard techniques, such
as dimensional regularization, fails or becomes unnecessarily
difficult
• We have therefore had to utilize alternative, less known,

techniques such as denominator regularization
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Derived expressions
• Various results were found (see arXiv:2203.01259)

• Two very general generalizations that will certainly be useful
elsewhere:
• Analytic Continuation of the Generalized Epstein Zeta
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Generalized Epstein Zeta Function

• In 2→ 2 NLO scattering we encounter

V (p2) ∝
∫ 1
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• Which we can renormalize to find the amplitude takes the
form

M = −λ
[
1 + λ

(
V (s) + V (t) + V (u)

)]
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Derived expressions continued

The prevalence of the sinc function sinc(x) = sin(x)
x in these finite

size systems’ descriptions, leads one to seek a generalization to a
formula originally proposed by Ramanujan and formalized by Hardy

∑
0≤n<x
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√
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Which enabled us to show that unitarity holds in the finite size
system we are describing, for n = 1, 2, 3 finite dimensions.
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Size of corrections

We find corrections on the same order of magnitude as the infinite
volume calculation
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What remains?

We can see that there is a possibility of reasonable size corrections
to calculations performed in finite sized systems. This is an
important step of a much longer journey. Some of what remains to
be done:

• Thermal Field Theory of finite size φ4 theory

• Critical exponents of finite size φ4 theory

• Find closed form results for many numerically difficult results
already found

• Generalize to more complicated systems, eventually such as
QCD itself
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The End

Thank you for making it to the end of my talk!
The first paper is available as a preprint “Finite System Size
Correction to NLO Scattering in φ4 Theory” at arXiv:2203.01259.
Look out for our follow up paper going into the numerics of our
results, expected to be on arXiv soon.
Feel free to contact me with any further questions:
23787295@sun.ac.za
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