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Evidence for a Standard Model like Higgs boson
I In the summer of 2012 an SM-like particle (h) was found at

the LHC.

I So far its properties agree with SM predictions at tthe 20%
level.

I Its mass derived from the γγ and ZZ channels is

mh = 125.09± 0.24 GeV
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Status of SM particle physics



SM Lagrangian: Short form



SM Lagrangian: complete form before EWSB (A. Djouadi:
Phys. Rept. 457 (2008), 1-216)



SM Lagrangian: Higgs Mechanism



SM Lagrangian: From unphysical to physical states:
Symmetry breaking



SM Lagrangian: complete form after SSB
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Evidence for a Standard Model like Higgs boson (Sushi,
ggHiggs,...)
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Evidence for a Standard Model like Higgs boson
(http://tiger.web.psi.ch/hdecay/)
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Beyond the SM

I The SM-like limit exists in various models with extra neutral
Higgs.

I Any extended Higgs sector a Charged Higgs would be a signal.

I Such scalars appear in multi-Higgs doublet (MHDM).

I From EWO are in agreement with SM with ρ = 1.
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Potential with sotf Z2-violating

V (Φ1,Φ2) = −1

2

{
m2

11Φ†1Φ1 + m2
22Φ†2Φ2 +

[
m2

12Φ†1Φ2 + h.c.
]}

+
λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4(Φ†1Φ2)(Φ†2Φ1) +
1

2

[
λ5(Φ†1Φ2)2 + h.c.

]
. (1)

Apart from the term m2
12, this potential exhibits a Z2 symmetry,

(Φ1,Φ2)↔ (Φ1,−Φ2) or (Φ1,Φ2)↔ (−Φ1,Φ2). (2)

The most general potential contains in addition two more quartic
terms, with coefficients λ6 and λ7, and violates Z2 symmetry in a
hard way T.D.Lee PRD8,1226’73,”JF.Gunion et al.The HHG”.

I The parameters λ1–λ4, m2
11 and m2

22 are real.

I The potential (1) can lead to CP violation when λ5 and m2
12

are complex.
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Mass eigenstates
We use the following decomposition of the doublets:

Φ1 =

(
ϕ+

1

(v1 + η1 + iχ1)/
√

2

)
, Φ2 =

(
ϕ+

2

(v2 + η2 + iχ2)/
√

2

)
,

(3)
Here v1 = cosβ v , v2 = sinβ v , v = 2mW /g , with tanβ = v2/v1.
The charged Higgs bosons are the combination orthogonal to the
charged Nambu–Goldstone bosons:

H± = − sinβϕ±1 + cosβϕ±2 (4)

and their mass is given by

M2
H± = µ2 − v2

2
(λ4 + <λ5), (5)

where we define a mass parameter µ by

µ2 ≡ (v2/2v1v2)<m2
12. (6)
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Mass eigenstates and gauge couplings

With all momenta incoming, we have the H∓W±φ gauge
couplings:

H∓W±h :
∓ig

2
cos(β − α)(pµ − p∓µ ),

H∓W±H :
±ig

2
sin(β − α)(pµ − p∓µ ),

H∓W±A :
g

2
(pµ − p∓µ ). (7)

The strict SM-like limit corresponds to sin(β − α) = 1.

VVh : sin(β − α),

VVH : cos(β − α),

VVA : 0. (8)

V = W±,Z



Theoretical constraints

The 2HDM is subject to various theoretical constraints.

I Stability or positivity of the potential:

V (Φ1,Φ2) > 0 as |Φ1|, |Φ2| → ∞. (9)

This requirement gives the following conditions on λ’s
PM. Ferreira et al ,PLB,2005

λ1 > 0 , λ2 > 0 , λ3+2
√
λ1λ2 > 0 , λ3+λ4−|λ5| > 2

√
λ1λ2.

(10)

I Perturbativity: satisfy |λi | ≤ 8π (i = 1, ..., 5). has significant
effect on (tanβ,MH±) plane.

I Unitarity: all 2→ 2 processes scattering are under control.

Max(Eigenvalues(M)) < 0.5 (11)



Yukawa Interaction for the 2HDM T.D.Lee PRD8,1226’73

−LYukawa = QLΦaF
D
a DR +QLΦ̃aF

U
a UR +LLΦaF

L
a LR +h.c., (12)

Model d u `

I Φ2 Φ2 Φ2

II Φ1 Φ2 Φ1

III Φ1&Φ2 Φ1&Φ2 Φ1&Φ2

X Φ2 Φ2 Φ1

Y Φ1 Φ2 Φ2

Table 1: The most popular models of the Yukawa interactions in the
2HDM.

in Type II (MSSM)

H+bt̄ :
ig

2
√

2mW

Vtb[mb(1 + γ5) tanβ + mt(1− γ5) cotβ],

H−tb̄ :
ig

2
√

2mW

V ∗tb[mb(1− γ5) tanβ + mt(1 + γ5) cotβ].

(13)

Rachid BENBRIK


Rachid BENBRIK


Rachid BENBRIK


Rachid BENBRIK


Rachid BENBRIK


Rachid BENBRIK




Charged Higgs boson decays

a charged Higgs boson can decay to a fermion-antifermion pair

H+ → cs̄, (14a)

H+ → cb̄, (14b)

H+ → τ+ντ , (14c)

H+ → tb̄, (14d)

to gauge bosons,

H+ →W+γ, (15a)

H+ →W+Z , (15b)

or to a neutral Higgs boson and a gauge boson:

H+ → hW+, AW+ (16)

and their charge conjugates.
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Light H+ (MH± < mt)

I We focus on CPC case and set Mh = 125 GeV.

I Use 2HDMC and HDECAY software

I We consider 3-body modes via off-shell of H+ → tb̄,
H+ → hW+, H+ → HW+ and H+ → AW+.

I We use B → Xsγ constraints: light charged Higgs is excluded
in type-II.



Light H+ (MH± < mt)
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Figure 1: Light charged-Higgs branching ratios vs tanβ.

I We focus on CPC case and set Mh = 125 GeV.
I Use 2HDMC and HDECAY software
I We consider 3-body modes via off-shell of H+ → tb̄,

H+ → hW+, H+ → HW+ and H+ → AW+.
I We use B → Xsγ constraints: light charged Higgs is excluded

in type-II.



Heavy H+ (MH± > mt)
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Figure 2: Heavy charged-Higgs branching ratios vs tanβ.

I sin(β − α) = 1.



Heavy H+ (MH± > mt)
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Figure 3: Heavy charged-Higgs branching ratios vs tanβ.

I sin(β − α) = 0.7



Branching ratios vs MH± in Type I
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Figure 4: Branching ratios of charged-Higgs as a function of MH± in
Type I with sin(β − α) = 0.81 and tanβ = 8.



Branching ratios vs MH± in Type X
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Figure 5: Branching ratios of charged-Higgs as a function of MH± in
Type I with sin(β − α) = 0.81 and tanβ = 8.



Constraints From B Physics

I b → sγ (yellow), B0
s → µµ (red), B0

d → µµ (magenta)

I ∆Ms (blue), ∆Md (cyan).

Figure 6: Exclude regions from B Physics in (MH± , tanβ)plane in Type I
a,d II with sin(β − α) = 1 and mh = 125 GeV, mH = mA = MH±
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Production processes: Single production at the LHC
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Figure 7: Feynman diagrams contributing in Single production at the
LHC production processes.



Production processes: Single production at the LHC
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Production processes: Single production at the LHC
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Production processes: Pair production at the LHC
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Production cross sections pp → H±X
We use CTEQ6L,

√
s = 14 TeV and sin(β − α) = 1 in Types I and

II.
I gb̄ → H+t̄, (solid),
I gg → H+bt̄, (dotted),
I gg → Hj → H+W−, (dash-dotted).
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Figure 8: Charged Higgs production cross sections in the 2HDM, at 14
TeV



Production cross sections pp → H±X
We use CTEQ6L,

√
s = 14 TeV and sin(β − α) = 1 in Types I and

II.

I For tanβ = 1, type-I and type-II are diffrent due to sign
Yukawa.

I Models X and Y will have the same predictions except for
(τν).

I The bumpy structure is due to resonnance of neural Higgs.
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Production cross sections pp → H±X
We use CTEQ6L,

√
s = 14 TeV and sin(β − α) = 1 in Type II.
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LHC strategies searches: ATLAS results at 8 TeV

Figure 9: ATLAS regions of the [cos(β − α), tanβ] plane for the 2HDM
Model I (left) and Model II (right) excluded by fits to the measured rates
of Higgs boson production and decays.



LHC strategies searches: ATLAS results at 13 TeV

Figure 10: ATLAS regions of the [cos(β − α), tanβ] plane for the 2HDM
Model I (left) and Model II (right) excluded by fits to the measured rates
of Higgs boson production and decays.



Looking pp → tt̄, t → H±b, H± → Wφ, (MH± < mt)
Here we use for mt = 172.5 GeV:

σ(pp → tt̄) = 252.89+6.39
−8.64(scale) ++11.67

−11.67 (PDF)(pb)
√
s = 8TeV

σ(pp → tt̄) = 831.76+19.77
−29.20(scale) ++35.06

−35.06 (PDF)(pb)
√
s = 13TeV

σ(pp → tt̄) = 984.50+23.21
−34.69(scale) ++41.31

−41.31 (PDF)(pb)
√
s = 14TeV

The PDF uncertainty was obtained with MSTW2008 at the
68%CL. The plots shows
σ(pp → tt̄)×Br(t → H±h)×Br(H± →W±h) in type-I including
uncertainties from scale variation and 68%CL PDF.
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Figure 11: Product of branching ratios, BR(t → H+b)× BR(H+ → τ+ν)



Looking pp → tt̄, t → H±b, H± → Wφ, (MH± < mt)
I σ(pp → tt̄)× Br(t → H±b)× Br(H± →Wφ) in scenario:1
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Figure 12: The rates for
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three LHC energies.



Further search for H± at the LHC
I Channels for MH± <∼ mt :

• Single H+ production

MH± 100 GeV 150 GeV
tanβ 3 10 3 10

pp → H+W−bb̄
√ √ √

qq̄(q′)→ H+bq
√

(
√

)
√

pp(b̄g)→ H+t̄X , H+ →W+φ
√

(
√

)
√

• H+H− pair production

MH± 100 GeV 150 GeV
tanβ 3 10 30 3 10 30

gg , bb → H+W−
√

(
√

)
√

(
√

)
gg , bb → H+H−

√ √ √ √ √ √

qq̄(q′)→ H+H−q′Q ′
√ √ √ √ √ √

Table 2: Proposed channels, denoted by
√

, for Models I and
X, requiring resonant production, at 30 fb−1. The cases
denoted by (

√
) would need higher luminosity.



Conclusions and perspectives

I Various SM like models exsist with extra Higgs scalars.

I A charged Higgs would be the most striking signal of a Higgs
with extra doublets.

I In this talk we have analyzed different models in 2HDM by
focusing on the most decay modes.

I In type I: the most ”natural” decay modes are :τν or Wφ
with any neutral Higgs.

I In type II: the most ”natural” decay modes are :tb̄ or Wφ
with φ are heavy.

I If a signal were to be found. How to distinguish between
MSSM and 2HDM (or even type-1 and type-2)?

I In case where of high mass, QCD background is very
challenging, so improved analysis techniques could turn out to
be very benefical.



Thank you!
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