PAUL SCHERRER INSTITUT





#### **Andreas Crivellin**

#### PSI & UZH Anomalies in Particle Physics

22.03.2022



## Outline

- Introduction
- Status of the Flavour anomalies
  - b→sµµ
  - b→ст∨
  - $-a_{\mu}$
  - -τ→μνν
  - Cabibbo Angle Anomaly
  - Non-resonant di-leptons
- Explanations of the Flavour anomalies
- Collider Anomalies
- Conclusions

## Physics Beyond the Standard Model

- Dark Matter existence established at cosmological scales
  - New weakly interacting particles
- Neutrinos not exactly massless
  - Right-handed (sterile) neutrinos
- Matter anti-matter asymmetry



- SMDark M<sup>2</sup>
- Dark Matter
- Dark Energy
- Additional CP violating interactions

The SM must be extended! What is the underlying fundamental theory?

## **Discovering New Physics**

- Cosmic Frontier Energy Cosmic rays and neutrinos **Frontier** – Dark Matter – Dark Energy Energy Frontier NP -LHCCosmic Intensity - Future colliders **Frontier Frontier**  Intensity Frontier – Flavour
  - Neutrino-less double-β decay
  - Test of fundamental symmetries
  - Proton decay

## Finding New Physics with Flavour

 At colliders one produces many (up to 10<sup>14</sup>) heavy quarks or leptons and measures their decays into light flavours



Flavour observables can be sensitive to higher energy scales than collider searches

# Overview on the Flavour anomalies

LFUV in  $b \rightarrow s\ell^+ \ell^-$ 

$$R(K) = \frac{B \to K\mu^{+}\mu^{-}}{B \to Ke^{+}e^{-}}$$
$$R(K^{*}) = \frac{B \to K^{*}\mu^{+}\mu^{-}}{B \to K^{*}e^{+}e^{-}}$$

- Muon and electron masses can be neglected
   Clean prediction
- Supported by

$$\frac{\Lambda_b \to Kp \mu^+ \mu^-}{\Lambda_b \to Kp e^+ e^-} = 0.86_{-0.11}^{+0.14} \pm 0.05$$



#### LFUV in B decays >4 $\sigma$

## Global Fit to $b \rightarrow s\mu^+\mu^-$ Data

- Perform global model independent fit to include all observables (≈180)
- Several NP hypothesis give a good fit to data significantly preferred over the SM
   hypothesis

$$O_{9} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \ell$$
$$O_{10} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \gamma^{5} \ell$$



#### Fit is >7 $\sigma$ better than the SM

#### b→cτν Transitions

 $\to D^*\ell\nu$ 

0.4

LHCb15

- LFU test of the charged current
- Tau mode  $A_{*}^{Q} \cap A_{*}^{Q} \cap A_{*}^{Q}$ consistently  $A_{*}^{Q} \cap A_{*}^{Q} \cap A_{*}^{Q}$ enhanced  $A_{*}^{Q} \cap A_{*}^{Q} \cap A_{*}^{Q}$
- $R(D^*)$  Supported Belle17 HFLAV 0.2 + Average of SM predictions by Spring 2019  $R(D) = 0.299 \pm 0.003$  $R(D^*) = 0.258 \pm 0.005$  $P(\chi^2) = 27\%$  $R(J/\Psi) = \frac{B_c \to J/\Psi \tau \nu}{B_c \to J/\Psi \ell \nu}$ 0.2 0.3 0.4 0.5  $R(D) = B \to D\tau v / B \to D\ell v$

HFLAV average

LHCb18

3σ

Ŧ

Belle19

Tree-level need larger NP effect

O(10%) constructive preferred effect at  $3\sigma$ 

 $\Delta \chi^2 = 1.0$  contours

BaBar12

Belle15

#### Muon Anomalous Magnetic Moment



- Theory prediction intricate (hadronic effects)  $\Delta a_{\mu} = (251 \pm 49) \times 10^{-11}$ T. Aoyama et al., arXiv:2006.04822
- Need NP of the order of the SM EW contribution
- Chiral enhancement necessary for heavy NP
- Soon more experimental results from Fermilab
- Vanishes for  $m_{\mu} \rightarrow 0 \implies measure of LFUV$

4.2σ deviation from the SM prediction

## Cabibbo Angle Anomaly (CAA)

- Deficit in first row and first column CKM unitarity  $|V_{ud}^2| + |V_{us}^2| + |V_{ub}^2| = 0.9985 \pm 0.0005$ (PDG)  $|V_{ud}^2| + |V_{cd}^2| + |V_{td}^2| = 0.9970 \pm 0.0018$ AC, Hoferichter, Manzari, 2102.02825
- NP in the determination of  $V_{ud}$  from beta decays needed
- Can be interpreted as
  - NP in beta decays
  - NP in the Fermi constant
  - LFUV (modified Wµv coupling)



#### **Flavour Anomalies**



#### Explanations



## **Outlook: Physics at Future Colliders**

- Flavour Anomalies require NP at the TeV scale
   Direct Searches at HL-LHC, HE-LHC, FCC-pp
- This new particles in general also affect EW precision observables
   1.15
   2006.1075

Z decays at CLIC and FCC-ee

 Flavour is directly linked to the Higgs boson
 CLIC, FCC



Flavour Anomalies (if confirmed) strengthen the physics case for future colliders significantly

#### LHC bounds and future prospects



#### FCC-hh reach six times higher

Andreas Crivellin

## Implications for FCC-ee and CEPC



Collider Anomalies



#### **Anatomy of the multi-lepton anomalies**

| Final state                                   | Characteristic                                                  | Dominant SM<br>process | Significance |
|-----------------------------------------------|-----------------------------------------------------------------|------------------------|--------------|
| l⁺l <sup>.</sup> + jets, b-jets               | m <sub>II</sub> <100 GeV,<br>dominated by 0b-<br>jet and 1b-jet | tt+Wt                  | >5σ          |
| l <sup>+</sup> l <sup>-</sup> + full-jet veto | m <sub>ii</sub> <100 GeV                                        | ww                     | ~3σ          |
| l≐l≐ & l≐l≐l + b-<br>jets                     | Moderate $H_T$                                                  | ttW, 4t                | >3σ          |
| l±l± & l±l±l et al.,<br>no b-jets             | In association<br>with h                                        | Wh, (WWW)              | 4.2σ         |
| Z(→I⁺I⁻)+I                                    | р <sub>тz</sub> <100 GeV                                        | ZW                     | >3σ          |

Anomalies cannot be explained by mismodelling of a particular process, e.g. ttbar production alone.

Very significant hints in low energetic di-leptons

151 GeV





#### Combined significance of $\approx 5\sigma$ (locally)

## Vector-like quark, LQs, Higgs PP



And more.....

Interesting signals for future investigation



PAUL SCHERRER INSTITUT





- Charged scalars: Problems with distributions

   A. Celis, M. Jung, X. Q. Li, A. Pich, PLB 2017
   R. Alonso, B. Grinstein, J. Martin Camalich, PRL 2017
- W': Strong constraints from direct LHC searches D. Buttazzo, A. Greljo, G. Isidori, D. Marzocca, JHEP 2017
- Leptoquark: Strong signals in qq→ττ searches CMS, 1809.05558; ATLAS, 1902.08103

Explanation difficult but possible with Leptoquarks

## $b \rightarrow s\mu^+\mu^- explanations$

- Z' W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin 1403.1269, ....
  - Necessary effects in B<sub>s</sub> mixing
  - Collider constraints
- Loop contributions



- Scalars and vector-like fermions
  B. Gripaios, M. Nardecchia, S. A. Renner, JHEP 2016
- 2HDM A.C., D. Müller and C. Wiegand, 1903.10440
- R<sub>2</sub> Leptoquark D. Bečirević and O. Sumensari, 1704.05835
- Z' coupling to tops J. Kamenik, Y. Soreq and J. Zupan, 1704.06005
- Leptoquarks
   G. Hiller and M. Schmaltz, 1408.1627
   D. Bečirević, S. Fajfer and N. Košnik, 1503.09024, ....

#### Small effect needed; many possibilities

# $a_{\mu}$ explanations

- MSSM
  - tan(ß) enhanced slepton loops
- Scalars
  - Light scalars with enhanced muon couplings
- Z'
  - Very light with  $\tau\mu$  couplings (m<sub> $\tau$ </sub> enhancement)
- New scalars and fermions
  - κ/Υ<sub>μ</sub>
- Leptoquarks
  - m<sub>t</sub> enhanced effects

Chiral enhancement or very light particles

## Leptoquarks in a<sub>...</sub>

Chirally enhanced effects via top-loops



#### Correlations with $h \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$

# $a_{\mu} vs h \rightarrow \mu \mu$

- Chirally enhanced effects via top-loops
- Same coupling structure  $\rightarrow$  direct correlation



A.C., D. Mueller, F. Saturnino, 2008.02643

 $h \rightarrow \mu \mu$  at future colliders

 $a_{\mu} vs Z \rightarrow \mu \mu$ 

#### Chirally enhanced effects via top-loops



#### $Z \rightarrow \mu \mu$ at future colliders

0.0

 $\lambda_{32}^{2 LR}$ 

0.5

1.0

## Cabibbo Angle Anomaly and EW Fit





#### $>5\sigma$ improvement over SM hypothesis with VLLs

## $\Delta A_{FB}$

- Right-handed vector operators LFU
- Good fit requires the tensor operator



#### Hint for scalar leptoquarks

scalar LQ