

Hyper-Kamiokande Status and Prospectives Francesca Di Lodovico - King's College London

First Pan-African Astro-Particle and Collider Physics Workshop 21 March 2022

Hyper-Kamiokande

gigantic detector to confront elementary particle unification theories and the mysteries of the Universe's evolution

First Pan-African Astro-Particle and Collider Physics Workshop

Why neutrinos do matter?

Fundamental particles and interactions

Cosmology

Neutrinos are important in understanding of history of structure formation; furthermore may give insight into matter-antimatter asymmetry

21/Mar/2022

Astrophysics

Nuclear Physics

The Hyper-Kamiokande Experiment

er D

Physics in Hyper-Kamiokande

1/2

68m

neutrinos

Proton decay

The Hyper-Kamiokande Experiment

Neutrino Oscillations

Neutrino Oscillations will be measured based on accelerator and atmospheric neutrinos.

Astrophysical Neutrinos

Solar, supernova, and supernova relic neutrinos will be explored for astronomical research.

Rare processes such as proton decay or neutron decay processes that violate baryon number will be searched.

Neutrino Oscillations

and one complex phase: θ_{12} , θ_{23} , θ_{13} , δ_{CP} Parametrise mixing matrix U as:

Solar $\begin{bmatrix} U_{e2} & U_{e3} \\ U_{\mu 2} & U_{\mu 3} \end{bmatrix}$

Hyper-Kamiokande will be able to study the solar, atmospheric and accelerator neutrinos.

21/Mar/2022

PMNS mixing matrix relates mass and flavour eigenstates $|\nu_f\rangle = \sum_{i=1}^{N} U_{fi}^* |\nu_i\rangle$ Free parameters usually written in terms of three rotation angles

Neutrino Oscillations

Neutrino Oscillations

 δ_{CP} measured comparing neutrinos ($\nu_{\mu} \rightarrow \nu_{e}$) and antineutrino ($\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$) oscillations.

Neutrino Masses

Two possible mass ordering: normal and inverted.

- Δm_{12}^2 from solar neutrinos - sign known

- $|\Delta m_{32}^2|$ from atmospheric neutrinos - sign not known Matter interaction needed to

solve the ambiguity

Kamioka"NDE"

Nucleon Decay Experiment Neutrino Detection Experiment

Super-Kamiokande (1996-)

Kamiokande (1983 - 1996)20x 3kton 50k(22.5k)ton 20% coverage with 50cm PMT 40% coverage with 50cm PMT

Unprecedented scale of underground cavern

260k(188k)ton

High-QE 50cm PMTs (20% photocoverage) and mPMTs.

8.4x

in a nutshell

Hyper-Kamiokande Experiment

Objective of the sensitivity of the sensitivity

New (IWCD) and upgraded (@280m) near detectors to control systematic error.

J-PARC neutrino beam will be upgraded from 0.5 to 1.3MW (x2.5 higher than current T2K beam power)

21/Mar/2022

ower)

Hyper-K Schedule

21/Mar/202

Ø7 years construction from year 2020; 5 years excavation + subsequent 2 years detector construction. Data taking from 2027.

Entrance Yard Construction

Access tunnel (1873m) completed in February 2022. Approach tunnel started.

Hyper-K Collaboration

21/Mar/2022

Hyper-K Experiment (Far Detector)

21/Mar/2022

Two components: -Inner Detector (ID) -Outer Detector (OD)

INPP 2022

Hyper-K Detector Construction has Started

PMTs for the Inner Detector			
	Super-K	Hyper-K	
	11,129 50cm PMTs	20,000 50cm PMTs (JPN) (+ additional PDs (Oversea))	
	40 %	20 %	
ΛT	~12%	~24%	
	~4 kHz (Typical)	4 kHz (Average)	
on	~3 nsec	~1.5 nsec	

PMTs for the Inner Detector			
	Super-K	Hyper-K	
Number of PMTs	11,129 50cm PMTs	20,000 50cm PMTs (JPN) (+ additional PDs (Oversea))	
Photo-sensitive Coverage	40 %	20 %	
Single photon efficiency /PMT	~12%	~24%	
Dark Rate /PMT	~4 kHz (Typical)	4 kHz (Average)	
Timing resolution of 1 photon	~3 nsec	~1.5 nsec	

21/Ma

2020/12 First six PMTs delivered to Kamioka

OProduction has started on time for the 50cm PMTs with Box&Line dynode. © 300 PMTs by March, 20,000 PMTs in total by 2026 according to the Japanese budget profile.

	20" B&L PMT
Photo-cathode area	2000 cm ²
Photon detection	~6 hits/MeV/20k B&
Timing resolution (TTS)	2.7 ns
Dark rate	4 kHz
Remarks	 Performance confirm High photon detection efficiency

ed on

870 cm² ~1 hits/MeV/5k mPMT 1.3 ns

200-300 Hz x 19 PMTs

- Granularity
- Directionality
- Better timing resolution ٠

OmpMTs will provide unique and complementary information to 20"PMTs.

Outer Detector (OD) Photosensing

OD

- 3" PMTs - Wave-length shifter plate High-reflective Tyvek

INPP 2022

ID

- Photosensing system composed of
- Crucial to reject external background.

Suite of Near Detectors

Oritical components to precisely understand J-PARC beam and neutrino interactions.

IWCD

Off-axis spanning water Cherenkov detector: intrinsic backgrounds, electron. (anti)neutrino cross-sections, E_{ν} vs. observables, H_2O target.

INPP 2022

INGRID On-axis detector: measure beam direction, monitor event rate.

ND280

Off-axis magnetised tracker: charge separation (wrongsign background), recoil system

Hyper-K Beam Oscillation Analysis

Based on T2K oscillation method.

Hyper-K Beam Oscillation Analysis

21/Mar/2022

10 years (2.7E22 POT), $\nu: \overline{\nu} = 1:3$ OUse Super-K MC, scaled to HK volume and exposure @Expect approx: -2300 ν_{ρ} events -1900 $\overline{\nu}_{\rho}$ events -Assuming $sin(\delta_{CP}) = 0$ O Difference between neutrino and antineutrino rates gives δ_{CP}

 $\sin \delta_{CP} \neq 0$ Sensitivity (0%)80 sind_{cp}=0 5σ 70 60 excluding 50 40 30 values 20 Statistics only 10 CP Hyper-K preliminary

True normal hierarchy (known) $\sin^2(\theta_{13}) = 0.0218 \sin^2(\theta_{23}) = 0.528 |\Delta m_{32}^2| = 2.509\text{E-3}$

Percentage of true δ_{CP} values for which $\sin(\delta_{CP}) = 0$ can be excluded, as a function of HK-years.

The areas below the curves show the span of possible values, for varying systematic error models.

Sensitivity to exclude $sin(\delta_{CP}) = 0$, as a function of true δ_{CP} value, for 10 HKyears. Good opportunity to discover CP violation in neutrino sector at $> 5\sigma$ (61%) fraction of δ_{CP} values w/ 10years data taking).

Resolution on δ_{CP} and measurement of $\sin^2 \theta_{23}$

How accurately can we measure the value of δ_{CP} ?

 $0 1 \sigma$ error on δ_{CP} is: $\sim 19^\circ$ for $\delta_{CP} = -\pi/2$ $\sim 7^{\circ}$ for $\delta_{CP} = 0$

Resolution on δ_{CP} and measurement of $\sin^2 \theta_{23}$

For a true value of $\sin^2 \theta_{23}$, how much can we exclude the wrong octant? ($\sin^2 \theta_{23} < \text{or} > 0.5$)

The wrong octant can be excluded at 3σ for true $\sin^2 \theta_{23} < 0.47$ and true $\sin^2 \theta_{23} > 0.55$ with the Improved syst. error model

Adding Atmospherics

Neutrinos penetrating the Earth are affected by the mass effect.

Comparison between neutrinos and antineutrinos oscillations can be used to determine the hierarchy.

Can exclude incorrect mass ordering at $4 - 6\sigma$ significance (depending on value of $\sin^2 \theta_{23}$)

Adding Atmospherics

If mass ordering unknown, beam analysis less sensitive for some values of δ_{CP} .

OJoint atmospheric and beam analysis increases sensitivity above 5σ

The power of the atmospheric sample improves the sensitivity to exclude $sin(\delta_{CP}) = 0$, as a function of true δ_{CP} value, particularly in the unknown mass ordering case:

 $sin(\delta_{CP})$

Sensitivity to exclude $sin(\delta_{CP}) = 0$, as a function of true δ_{CP} value, for 10 HK-years and true normal mass ordering.

Astrophysics Neutrinos at Hyper-K

Solar Neutrinos Burning processes, modelling of the Sun Property of neutrino

Supernova Neutrinos

- SN explosion mechanism
- SN monitor
- Nucleosynthesis

Supernova Relic Neutrinos

- SN mechanism
- Star formation history
- Extraordinary SNe

Solar Neutrinos

-Solar neutrinos are the neutrinos originated from the nuclear reactions in the Sun.

- -Large statistics: 130 ν ev./day/tank, E_{vis} >4.5MeV
- -Highlights of solar ν measurements: Day/Night (D/N) Asymmetry
- The terrestrial matter effect can result in **D/N** asymmetry.
 - This can affect $\wedge m^2$ **M**12 measurement.

Upturn of the spectrum

Upturn is the variation of the oscillation probability between the vacuum and MSW dominated energy region.

Upturn not observed yet.

Solar Neutrinos

Large D/N asymmetry is expected to be observed with $> 5\sigma$ after 10 years of operation

20

Year

In the upturn analysis, it is expected that the sensitivity exceeds $3(5)\sigma$ after 10y operation with the threshold of 3.5(4.5 MeV)

Supernova Neutrinos

- Supernova neutrino observation: -54-90k events for SN at 10 kpc (most sensitive to $\overline{\nu}_{\rho}$)
 - Precise Neutrino Time profile
 - -Precise spectrum measurement
 - Investigation of the SN mechanism (SASI/ Rotation/Convection)

Set the set of the mechanism

Models by different groups, using various approximations

- Galacti center M31 Mega-ton 10 10 10 events/0 10 10 10 10 10 10 distance(kpc)

Supernova paper

First Hyper-K paper! Published by Astrophysical Journal on April 13, 2021. @arXiv:2101.05269 [astroph.IM] Hyper-K has the potential to have a large statistics if there is a supernova burst Hyper-K can distinguish between different explosion mechanism models.

Event rate in Hyper-K from supernova burst for different explosion models

Supernova Relic Neutrinos

- -Supernova Relic Neutrino (SRN) -Diffused neutrinos coming from all past supernovae.
- Not discovered but promising extra-galactic ν .
- -SRN can be observed by HK in 10y with $\sim 70\pm 17$ events. It is > 4σ for SRN signal. SRN 4MeV 100%

-The number of detected SRN events is predicted for various neutron-tagging configurations.

-In the case of 70% efficiency, ~70 events will be observed within 10

operation years. This corresponds to 4σ sensitivity

Proton Decay Searches

Two major modes predicted by many models

21/Mar/2022

Proton Decay Searches

21/Mar/2022

Hyper-K is able to pursue also many other final states with the highest precision.

Conclusion

A groundbreaking experiment is being built in Japan. Major progress in the last year in the construction of the experiment. It will address major open questions in science! Multipurpose experiment!

It will start to take data in 2027!!

Backup Slides

Additional slides for perusal

21/Mar/2022

50cm PMT production

Storage

Testing signal

PMT Dark Rooms

Electronics Canisters

Canisters will contain electronics boards and will be in water.

ID

Suite of Near Detectors

ND280

Large angle acceptance

INPP 2022

Data taking planned
 from 2022.

- -Large angle acceptance.
- -High efficiency for short tracks.

 Under investigation future upgrade during Hyper-K era.

Suite of Near Detectors

IWCD

New 1kton-scale water Cherenkov detector at ~1km baseline •Detector can vertically move \rightarrow measurement at different off-axis angles Progress in site choice and detector development. •Using mPMTs as Far Detector.

