Dark matter in the Universe

Chaire Galaxies et Cosmologie

Abell 2218

LRG-3-75: cosmic horse-shoe

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

The content of the Universe

Average density of the Universe ρ_c~10⁻²⁹ g/cm³

$$\Omega = \rho/\rho_c = 1$$

→Baryons= protons, neutrons, ordinary matter

→ Dark matter: exotic and unknown particles

→ Dark energy: repulsive force, accelerates the expansion

Atomic Hydrogen in galaxies

HI: map of atomic hydrogen

HI in M83: a galaxy similar to the Milky Way

M83: optical

Cartography of the dark matter Gravitationnal lenses: strong regime

Gravitationnal lenses: weak regime

Gravitationnal shear (Cosmos field)

Red: X-ray gas Blue: total matter

Massey et al 2007

Baryons and dark matter are gathered in the same structures

Several kinds of dark matter

Hot (neutrinos) Relativistic at decoupling Cannot form the small structures, if m < 5 keV

Cold (massive particles) Non relativistic at decoupling WIMPS ("weakly interactive massive particles") Neutralinos: particle m~100GeV The lightest supersymmetric particle

Cold model (CDM)WarmHot model (HDM)Image: Strain Strain

CDM or alternative models?

→CDM Particles unfound

→Problems for galaxies
Cusps versus cores

Missing satellites

Majority of baryons is outside galaxies

Simulations reproduce well large scale structures of galaxies: Cosmic web, filaments, walls and great walls, void structures, granularity of super-clusters

The WIMP miracle

Possible to obtain the required abundance of dark matter with particles of mass ~100 GeV, with the weak force interaction annihilation rate $\langle \sigma v \rangle \sim 3 \ 10^{-26} \ cm^3/s$

In early Universe, abundance of particules is « frozen », they decouple when their interaction $n < \sigma v > \sim 1/t_{hubble}$

Coincidence: corresponds to the lightest particle of super-symmetry (neutralino)

But in LHC: no super-symmetry, No new particle!

Present limits and Perspectives + ¹²⁴Xe

Xenon 1t (Gran Sasso): best limits today (2020-2022) Soon, we will reach the neutrino's ground *(will detect solar neutrinos) Detection of the rarest decay 1.8 10²²yrs (April 19) 126 events in 2yrs*

XENON*nT* the largest detector and cryostat, 3.5t

 \rightarrow 8 tons soon

Tully-Fisher scaling relation

 f_b universal fraction of baryons= 17%

CDM: « Cold Dark Matter » standard model

→most baryons are not in galaxies

Problems of the standard CDM model

→ Prediction of "cusps" at the centre of galaxies, not observed in particular absent in dwarf galaxies, dominated by dark matter

The dark matter profiles are not universal

→ Prediction of a large number of satellites around galaxies

The solution could come from the still unrealistic modeling of physical processes (star formation, feedback), lack of resolution of simulations, **or the nature of dark matter?**

Particles beyond standard model?

Ly- α : constraints on m(warm)

25 quasars z >4: spectra obtained at Keck (*Viel et al 2013*) Ly- α forest and comparison with simulations m_{WDM} > 3.3 kev (2 σ)

WDM, $m_X > 4.65$ keV thermal relics $m_s > 29$ keV non-resonant production Yeche et al (2017), Chabanier et al (2019)

NEUTRINO

Primordial Black holes as DM

 $R_{\rm S} = 2GM/c^2 = 3(M/M_{\odot}) \text{ km} \Rightarrow \rho_{\rm S} = 10^{18} (M/M_{\odot})^{-2} \text{ g/cm}^3$

Only form in early Universe, cosmological density $\rho \sim 10^{6} (t/s)^{-2} g/cm^{3}$

→ PBHs should form with horizon mass at formation $M_{hor}(t)$ in ct $M_{PBH} \sim c^3 t/G = 10^{-5}g$ at $10^{-43}s$ (minimum) $10^{15}g$ at $10^{-23}s$ (evaporating now) $1M_0$ at $10^{-5}s$ (maximum)

PBH formation requires strong inhomogeneities in the early inflation, and recollapsing local regions +phase transition, bubble collisions, collapse of strings or domain walls

e.g. Carr et al 2010, 2016

Primordial Black holes

Since PBH form in the radiative era, they can be considered as non-baryonic, and =CDM However, their mass is limited by MACHOS, EROS experiments Small masses evaporate

Gutierrez et al 2017

Candidates for the dark matter

New physics, beyond the standard model SM

Kaluza-Klein DM in UED Champs (charged DM) Kaluza-Klein DM in RS (Randall-Sundrum) D-matter Axion Cryptons Self-interacting Axino Superweakly interacting Gravitino **Braneworld DM** Photino SM Neutrino Heavy neutrino **Neutralino (WIMP) Sterile Neutrino** Messenger States in GMSB Sneutrino Light DM Branons Little Higgs DM Chaplygin Gas Split SUSY Wimpzillas **Primordial Black Holes** Cryptobaryonic DM Q-balls Mirror Matter

. . .

Fuzzy dark matter

Cusps exist in galaxy clusters, but not in galaxies In dwarf galaxies, cores of ~1kpc

Log (radius)

Bosons generated in non-thermal mechanisms → axions (*ALP, Marsh 2016*) cold particles, which can collapse **BEC "Bose-Einstein condensate",** macroscopic state at low T

• Finite mass, very small, λ de Broglie, $\lambda \operatorname{comp} = h/m_a v$ $\Rightarrow \lambda \operatorname{comp} = 1-2 \operatorname{kpc}$

• In fact $\,\lambda\,comp\sim 1\text{-}2\,$ kpc for $m_a\,=10^{\text{-}\,22}\,eV$, and $\,v{\sim}10km/s$

Simulations AMR: eq. Schrödinger- Poisson

Core= soliton, Halo= clumpy aspect + wavy (Schive +2014)

Quantum interferences: 9 orders of magnitude

MOND = MOdified Newton Dynamics

At weak acceleration

 $a << a_0$ MOND regime $a = (a_0 a_N)^{1/2}$ $a >> a_0$ Newtonian $a = a_N$

 $a_0 = 10^{-10} \text{ m/s}^2 \sim 10^{-11} \text{g}$ Milgrom (1983) Asymptotically $a_N \sim 1/r^2 \rightarrow a \sim 1/r$ $\rightarrow V^2 = cste$

Covariant theory: TeVeS → Gravitationnal lenses Bekenstein 2004

Success at weak surface densities

 $\Sigma < \Sigma_0 \sim 150 \text{ M}_{\odot}/\text{pc}^2$, \Rightarrow the critical acceleration a_0

In particular dwarf galaxies

Influence of the dark halo ?

Dynamics of galaxies, Formation of spirals and bars *Tiret & Combes 2007, 2008*

simulations

The bullet cluster

Rare case of violent collision, allowing to separate components

V=4700km/s (Mach 3)

→ Limit on σ_{DM}/m_{DM} < 1 cm²/g
 For modified gravity, need of non-collisionnal matter: neutrinos or dark baryons

Clowe et al 2006

 \rightarrow ~18% in the Lyman-alpha forest (cosmic filaments)

→~10% in the WHIM (Warm-Hot Intergalactic Medium) 10⁵-10⁶K OVI lines

→63% are not yet identified!
The majority are not in galaxies

Emergent gravity

The gravity is not a fundamental force, but a **maximisation of entropy**

The entropy of quantum intrication

Inspired by Entropy and thermodynamics of horizon (Bekenstein-Hawking) Holographic theory (Gerard 't Hooft)

Verlinde E.: 2010, On the origin of gravity and Newton laws Verlinde E.: 2016, Emergent gravity and the dark Universe

This principle retrieves the MOND dynamics

The entropy is diffuse in the universe as the dark energy **Dark matter**, when $\Sigma < a_0/8\pi G$, the apparent dark matter

$$\frac{2\pi}{\hbar a_0} M_D^2 = \frac{A(r)}{4G\hbar} \frac{M_B}{d-1} \qquad \text{or} \qquad \Sigma_D^2(r) = \frac{a_0}{8\pi G} \frac{\Sigma_B(r)}{d-1} \quad d=4$$

Or $g_D^2 = g_N a_0/6$, which is the MOND relation *(Milgrom 1983)* Hypothesis: we live in a de Sitter space Λ ; $\Omega_b \sim 5\%$ baryons $\Lambda=0.95$ $\Omega_D^2 = 4/3 \ \Omega_b \rightarrow \Omega_D = 0.26$

The Λ corresponds to the intrication of microscopic elements

This boost of **gravity (dark matter)** occurs when the entropy of quantum intrication of matter falls below the entropy of dark energy

Emergent gravity vs MOND in clusters

Gravity is boosted , as soon as acceleration $<< a_0 \sim c H$

 $g_{D} = \text{sqrt} (a_0 \cdot g_B/6), \text{ alors } g = g_D + g_B$

$$\int_0^r \frac{GM_D^2(r')}{r'^2} dr' = \frac{M_B(r)a_0r}{6}.$$

The acceleration becomes 2 to 3 x in MOND In galaxy clusters $g=g_B (1+1/x)$ with $x^2=6/(cH) g_B/(1+3 d_B)$

Lagrangian proposed, Vector field giving DM & DE *Hossenfelder 2017*

The dark matter puzzle

Galaxies + X-ray hot gas: 0.5% of total Ordinary matter (5%): 65% non identified

Exotic dark matter:

Particles still unknown, beyond standard model Masses between 10⁻²² eV (axions) & 10¹² eV (WIMPs) searched for during 35yrs →Fuzzy Dark Matter

 \rightarrow Neutrinos, contrained by Ly- α : $m_X > 4.65 \text{ keV} \& m_s > 28.8 \text{ keV}$

Problems of standard dark matter models at galaxy scale

 \rightarrow solution in baryonic physics

→ or in modified gravity, 5th force, quantum gravity, entropic force

