

Cosmology with Large-Scale Structure

Tesla Jeltema

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

Illustration Credit & Copyright Tom Abel & Ralf Kaehler (KIPAC, SLAC), AMNH

History of the Universe

Composition of the Universe

Structure Formation

Movie credit: simulations were performed at the National Center for Supercomputer Applications by Andrey Kravtsov and Anatoly Klypin

Structure Formation

Immense cosmic web of structures on all scales

Clusters of galaxies masses 10¹⁵ x Sun

Voids

relatively empty regions

* Much of my personal research uses clusters

The Growth of Structure

model

Cosmic Microwave Background

Structure at 380,000 years

Cosmological 2.5-degree thick wedge of the red MAIN galaxy sample has in

Sloan Digital Sky Survey

Structure at 13.8 billion years

The Growth of Structure

Cosmic Microwave Background

Density contrast 10⁻⁵

T = 2.728 K

Structure at 380,000 years

Cosmological model

Sloan Digital Sky Survey

Structure at 13.8 billion years

Evidence for Dark Matter

Dark matter is needed to seed density perturbations such that they grow by today

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Constraints on Dark Matter

The history of structure formation tells us how much dark matter is in the universe and that dark matter:

- can't be too fast (warm DM)
- can't be too light (fuzzy DM)
- can't push on itself too much (self-interacting DM)

Constrained by bottom-up structure formation, sizes of Sanstalaures, randtownies shapes

- Galaxy ellipticities (McDaniel+ 2021)
- Cluster strong lensing, density profiles (O'Donnell+ 2022)
- Cluster central galaxy offsets (Thoron, Cross+ in prep)

Dark Energy

Roen Kelly/DISCOVER

What is the cause of the observed cosmic acceleration?

- Is it dark energy or a modification of general relativity?
 - If it is dark energy, is it constant (Λ) or evolving; what is the DE equation of state?

Expansion History and Structure

Growth of density perturbations ceases when dark energy begins to dominate at

 $1 + z = \left(\frac{\Omega_M}{\Omega_{DE}}\right)^{1/3w}$

 $z \sim 0.35$

Retweeted In The Dark (@theDESurvey):

The dark-energy dominated era is younger than the age of life on earth!

The 1st life on earth lived in a matter-dominated universe. #DEST4TD

Image: HETDEX

What can we probe?

Require both to disentangle Dark Energy from Modified Gravity

"Standard" Cosmological Model

But ...

Tension in Hubble constant between early and late time measurements (3-6 σ) (Di Valentino+2021 review)

Verde, Treu, Reiss 2019

"Standard" Cosmological Model

But ...

Tension in growth of structure parameter S_8 between early and late time measurements (2-3 σ)

Planck CMB

Heymans, Tröster+ 2021

The Dark Energy Survey

DARK ENERGY SURVEY

- ➤ Over 6 years DES imaged 5000 deg² in 5 bands (grizY) to ~24th mag
- ➤ 30 deg² deep fields visited every few days for supernova

~ 700 million objects in Data Release 2 (DES collaboration 2021, arXiv:2101.05765)

226 million galaxies in 345 nights

Collaborating institutions:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DECam:

570 Megapixel Camera 3 deg² FOV

Dark Energy Probes

DARK ENERGY SURVEY

Galaxy Clustering

DARK ENERGY: SURVEY

Galaxies form in dark matter overdensities.

Galaxy positions trace matter distribution

→ Construct power spectrum (or real-space correlation function) from positions

(Limited by an unknown galaxy bias relative to dark matter)

Weak Lensing Shear

DARK ENERGY SURVEY

Light from distant galaxies passes through the same structure

→ Change in ellipticities correlated

- Measure galaxy shapes
- Measure correlation in shapes of pairs of galaxies.

DES Y3 Mass Map

Jeffrey et al. 2021

Structure - Cross Correlations

DARK ENERGY SURVEY

Combination jointly constrains astrophysical and systematic parameters

Cosmology with Clusters

DARK ENERGY SURVEY

Growth rate depends sensitively on the balance between gravity and the expansion rate

Clusters: A "Dark" Past

First evidence for dark matter:

Zwicky (1933) observations of Coma cluster galaxies

Measurement of $\Omega_m \sim 0.3$:

e.g. White et al. 1993 and many others

Optical Cluster Surveys

DARK ENERGY SURVEY

What we can predict:

(# of massive halos)/volume at z

What we see:

Galaxies in survey solid angle at photometric z

Richness (# of galaxies) → cluster mass

Solid angle → volume (cosmology dependent)

Optical Cluster Surveys

DARK ENERGY	
SURVEY	

The hard parts:

- We need to know the selection function for our observable
- Also need to know the relationship of observable to mass

Projection effects

on selection and richness estimates

are particularly challenging

Costanzi+ 2018, Wu+ 2022

DES Cluster Cosmology

DARK ENERGY

$$\langle N(\Delta \lambda_{i}, \Delta z_{j}) \rangle = \int_{0}^{\infty} dM dz^{\text{true}} \int_{\Delta z_{j}} dz^{\text{ob}} \int_{\Delta \lambda_{i}} d\lambda^{\text{ob}} \Omega(z^{\text{true}}) \frac{dV}{d\Omega dz^{\text{true}}} (z^{\text{true}}) P(z^{\text{ob}} | z^{\text{true}}, \Delta \lambda_{i}) n(M, z^{\text{true}})$$

$$\times \int_{0}^{\infty} d\lambda^{\text{true}} P(\lambda^{\text{true}} | M, z^{\text{true}}) \int_{0}^{\infty} d\lambda^{\text{cen}} P(\lambda^{\text{cen}} | \lambda^{\text{true}})$$

$$\times \left[f_{\text{cen}} \delta(\lambda^{\text{ob}} - \lambda^{\text{cen}}) + (1 - f_{\text{cen}}) \int_{0}^{\infty} dR_{\text{mis}} P(\lambda^{\text{ob}} | \lambda^{\text{cen}}, R_{\text{mis}}) P_{mis}(R_{\text{mis}}) \right].$$

$$\begin{split} \langle \gamma_T(R|\Delta\lambda_i,\Delta z_j) \rangle = & \frac{1 + m_{shear}}{\langle Nw(\Delta\lambda_i,\Delta z_j) \rangle \, \langle \Sigma_{crit} \rangle} \int_0^\infty dM \, dA \, dz^{\rm true} \, d\lambda^{\rm true} \int_{\Delta z_j} dz^{\rm ob} \int_{\Delta\lambda_i} d\lambda^{\rm ob} \; \; \Omega(z^{\rm true}) \frac{dV}{d\Omega dz^{\rm true}}(z^{\rm true}) \\ & \times n(M,z^{\rm true}) P(z^{\rm ob}|z^{\rm true},\Delta\lambda_i) P(A|\lambda^{\rm ob},z^{\rm ob},M) P(\lambda^{\rm true}|M,z^{\rm true}) w_{ij}(z^{\rm true}) \int_0^\infty d\lambda^{\rm cen} P(\lambda^{\rm cen}|\lambda^{\rm true}) \\ & \times \left[f_{\rm cen} \cdot e^{A \cdot T_{cen}(R|M)} \Delta \Sigma_{cen}(R|M) \delta(\lambda^{\rm ob} - \lambda^{\rm cen}) + (1 - f_{\rm cen}) \int_0^\infty dR_{\rm mis} \, P(\lambda^{\rm ob}|\lambda^{\rm cen},R_{\rm mis}) P_{mis}(R_{\rm mis}) \right] \end{split}$$

"It's like space camp but with more integrals"

- Tamas Varga

$$\times e^{A \cdot T_{mis}(R|M, R_{mis})} \Delta \Sigma_{mis}(R|M, R_{mis})$$
 (23)

DES Cluster Cosmology

DARK ENERGY

$$\langle N(\Delta\lambda_i,\Delta z_j)\rangle = \int_0^\infty dM dz^{\rm true} \int_{\Delta z_j} dz^{\rm ob} \int_{\Delta\lambda_i} d\lambda^{\rm ob} \, \Omega(z^{\rm true}) \frac{dV}{d\Omega \, dz^{\rm true}}(z^{\rm true}) P(z^{\rm ob}|z^{\rm true},\Delta\lambda_i) n({\bf HMF}^{\rm rue}) \\ \times \int_0^\infty {\bf Mass-richness\ relation} \int_0^\infty d{\bf Projection} \lambda^{\rm true}) \\ \times \left[f_{\rm cen} \delta(\lambda^{\rm ob} - \lambda^{\rm cen}) + (1 - f_{\rm cen}) \int_0^\infty d{\bf Projection} \lambda^{\rm true} \right] \\ \times \left[f_{\rm cen} \delta(\lambda^{\rm ob} - \lambda^{\rm cen}) + (1 - f_{\rm cen}) \int_0^\infty d{\bf Projection} \lambda^{\rm true} \right] \\ \times \left[f_{\rm cen} \delta(\lambda^{\rm ob} - \lambda^{\rm cen}) + (1 - f_{\rm cen}) \int_0^\infty d{\bf Projection} \lambda^{\rm true} \right] \\ \times n (\lambda_i, \Delta z_i)\rangle = \frac{1 + m_{shear}}{\langle Nw(\Delta\lambda_i, \Delta z_j)\rangle \langle \Sigma_{crit}\rangle} \int_0^\infty dM \, dA \, dz^{\rm true} \, d\lambda^{\rm true} \int_{\Delta z_i} dz^{\rm ob} \int_{\Delta\lambda_i} d\lambda^{\rm ob} \, \Omega(z^{\rm true}) \frac{dV}{d\Omega dz^{\rm true}}(z^{\rm true}) \\ \times n (\lambda_i, \Delta z_i)\rangle \langle \Sigma_{crit}\rangle \int_0^\infty dM \, dA \, dz^{\rm true} \, d\lambda^{\rm true} \int_{\Delta z_i} dz^{\rm ob} \, \Omega(z^{\rm true}) \frac{dV}{d\Omega dz^{\rm true}}(z^{\rm true}) \\ \times n (\lambda_i, \Delta z_i)\rangle \langle \Sigma_{crit}\rangle \langle \Sigma_{crit}\rangle \int_0^\infty dM \, dA \, dz^{\rm true} \, d\lambda^{\rm true} \int_{\Delta z_i} dz^{\rm ob} \, \Omega(z^{\rm true}) \frac{dV}{d\Omega dz^{\rm true}}(z^{\rm true}) \\ \times n (\lambda_i, \Delta z_i)\rangle \langle \Sigma_{crit}\rangle \langle$$

New cluster cosmology pipeline for Y3: Zhang et al. in prep.

(some) DES Cosmology Results

~ 40 papers went into these results!

Ongoing/Future Surveys

Optical: DESI Spectroscopic Survey,
 LSST with Vera Rubin Observatory,
 Nancy Grace Roman Space Telescope

X-ray: eROSITA (all-sky X-ray survey)

CMB: SPT-3G,
 AdvACT
 CMB-S4

Thank you!

Without DM things go wrong for structure formation!

Even with best (covariant) incarnation of modified gravity (TeVeS), structure goes non-linear, but the power spectrum of matter density fluctuation is wrong...