Dark Matter searches with the ATLAS detector at the LHC

Rachid Mazini

Academia Sinica, Taiwan

First Pan-African Astro-Particle and Collider Physics Workshop

Astrophysics

Bridge between astrophysics and the laboratory

Experimentally elusive

 Sparked a diverse and ingenious search programme

Particle physics

DM Scale: Experimental reach

R. Mazini, Pan-African Astro-Particle and Collider Physics Workshop 23/03/2022

Dark Matter Models

Need to balance between generality and completeness

- Simplified Models are used as guidance
- Few free parameters:
 - Masses
 - Couplings / lifetimes
 - Nature of BSM particles
- Visualisation of results is easier
- Easy comparisons between experiments

Most models provide some kind of Weakly interacting massive particles (WIMPs)

Dark matter in Colliders

Dark matter in Colliders

Recent ATLAS searches for DM

Exploiting the full Run 2 dataset

• ATLAS has a broad program of searches for Dark Matter candidates

ATLAS-CONF-2020-052

Individual searches

- E_T^{miss}+Jet Phys. Rev. D 103, 112006 (2021)
- E_T^{miss}+s(WW) Phys. Rev. Lett. 126 (2021) 121802
- $E_{T}^{miss}+Z(ll)$ arXiv:2111.08372
- VBF+ E_{T} ^{miss}+Y arXiv:2109.00925
- Emmiss+tW Eur. Phys. J. C 81 (2021) 860

- Emmiss+V
- $E_{T}^{miss}+h(bb)$
- E_T^{miss}+bjets
- $E_{\pi^{miss}+2L+jets}$

- JHEP 02 (2021) 226
- JHEP 11 (2021) 209
- JHEP 05 (2021) 093
- E_T^{miss}+1L+jets JHEP 04 (2021) 174
 - JHEP 04 (2021) 165

Combinations and summaries

- Simplified models ATL-PHY8-PUB-2021-045
- Higgs portal
- 2HDM+a ATL-PHYS-PUB-2021-045

Search for E_T^{miss} + jet

<u>JHEP 11 (2021) 153</u> Phys. Rev. D 103, 112006

Main backgrounds: Z(vv)+jet, W(lv) +jet

 Extreme accuracy of SM predictions (Eur. Phys. J. C 77 (2017) 829)

No significant excess or deficit

- Results from 2017-2018 data combined with earlier dataset
- Simplified models with vector, axialvector, scalar, or pseudoscalar mediators
- Fermion portal model

R. Mazini, Pan-African Astro-Particle and Collider Physics Workshop 23/03/2022

<u>2111.08372</u> EPJC 81 (2021) 13

Search for E_T^{miss} +Z(II)

Sensitivity to a range of beyond-SM processes (not only DM)

Main backgrounds: ZZ, WZ, Z+jets

Discriminators depend on target model:

- BDT output (ATLAS: $H \rightarrow inv$)
- Transverse mass (2HDM+a)

Complementary, model-dependent, constraints to direct detection

R. Mazini, Pan-African Astro-Particle and Collider Physics Workshop 23/03/2022

Higgs portal models

Higgs boson as a mediator between SM and DM sectors

- Invisible Higgs decay would increase $BR(h \rightarrow inv)$ w-r-t SM predictions
- SM BR(h \rightarrow inv) = 0.1% from h \rightarrow ZZ * \rightarrow 4v

Constraining H→invisible

Preliminary combination of Run 2 results VBF and tth (0L and 2L channels)

- Statistical combination with additional results obtained at \sqrt{s} = 7 and 8 TeV
- Final results will include more,

e.g. E_τ^{miss}+Z(II) [<u>2111.08372</u>], VBF+γ+E_τ^{miss} [<u>2109.00925</u>]

BR(h→inv) < 0.11 (0.11^{+0.04-0.03}) at 95% CL Complementary sensitivity to DD experiments for both scalar and Majorana WIMPs at low masses

R. Mazini, Pan-African Astro-Particle and Collider Physics Workshop 23/03/2022

Mediator searches

Search for resonances with four top quarks

Probing the rarest final states

Search built with minimal model dependence

• Selects events with two large-R jets

Main background: top pairs with extra jets

Scan of m(JJ) in 6 categories based on the number of additional jets and additional b-jets

Limits set on top-philic Z' models

 65 fb to 12 fb for Z' masses between 1.0 TeV and 3.0 TeV

"Classic" bump-hunts

Dijet searches limited by trigger thresholds.

Less sensitive to mediator masses
< 900 GeV than SPS/Tevatron

Substantial effort is being put in extending the reach to lower masses.

- Trigger-level searches
- Additional ISR

Simplified model summary

Mediator searches probe mass range from O(10) GeV to above 3 TeV

```
E_{_{\rm T}}^{_{\rm miss}} searches probe mass range up to ~2 TeV
```

Note: the actual reach depends on the coupling choices

Leptophilic vector mediator

Leptophobic axial-vector mediator

Simplified model summary

Upper limits on scattering cross-section can be set to compare with direct detection results (note: collider sensitivity is model dependent!)

Beyond simplified models

E_T^{miss} + Higgs(bb)

Targets both resolved and merged topologies of $H \rightarrow bb$ decays

 Larger E_T^{miss} → more collimated Higgs decays

Main backgrounds: V+heavy flavours, top pairs

Shape fit of E_{τ}^{miss} distribution and m(bb)

 Two categories for exactly 2 b-jets, or three or more

23/03/2022

E_T^{miss} + Higgs(bb) interpretation

Limits set on a variety of models.

For example, 2HDM+Z'

Search for E_T^{miss} + single top

Target all dominant E_{T}^{miss} +single-top diagrams in 2HDM+a^T

Main backgrounds: top pairs, single top, tt+Z

Discriminators depend on target signature:

- $m_{T} and am_{T^2}$ (Wt 1L) m_{T^2} (Wt 2L)
- BDT output (tj)

E_T^{miss} + single top interpretation

The results were interpreted in the context of 2HDM+a models, and used to set upper limits on the visible cross section of generic BSM contributions.

Summary of 2HDM+a searches

Various updates compared to partial Run 2 results JHEP 05 (2019) 142

- Additional signatures: $H^{\pm}(tb)$ and E_{-}^{miss} + single top
- Statistical combination of $E_{\perp}^{\text{miss}} + Z(II)$ and $E_{\perp}^{\text{miss}} + H(bb)$

Eur. Phys. J. C 81 (2021) 1118 2201.02472

Higgsino dark matter

Great effort in constraining the most viable supersymmetric dark matter candidates

• Example: statistical combination of two and three-leptons searches

Beyond the WIMP

DM at HL-LHC

- High Luminosity Large Hadron Collider (HL-LHC) will reach an instantaneous luminosity by a factor of 5 larger than the LHC nominal value
- E_T^{miss} + Jet could be a key channel for the search for dark matter
- Extrapolation from current results to 300 fb⁻¹ (Run2+Run3) and 3000 fb⁻¹ (HL-LHC) show the reach in DM searches
- Impact of different systematic uncertainties scenarios were investigated

Vibrant programme of searches for Dark Matter at colliders beyond

• Complementarity between searches for dark matter and mediator searches

Productive collaborations between theory and experiment

- Benchmark models to compare results from different experiments
- Models inspire new searches

The LHC Run 3 is just around the corner. Expecting ~350 fb⁻¹

Full HL-LHC program will extend significantly the reach (one order of magnitude more data!)

Thank you!