Ultimate precision of a tracker

Gang Li

Institute of High Energy Physics, Chinese Academy of Sciences

Technology & Instrument in Particle Physics, 2023 In Cape Town

Outline

- Introduction
- Some fast results with a toy full silicon tracker
- Interpretation with the CEPC tracker system as an example
- Summary

Future Electron Positron Colliders

- □ Various future electron positron collider experiments proposed, take the CEPC as an example
- Aims to cover a wide energy range: H/Z/W factories
- To run at $\sqrt{s} \sim 240$ GeV, above the **ZH** threshold for ~4M Higgs; at the **Z** pole for ~4 Tera Z; and lots of **W**⁺**W**⁻ pairs, and possible $t\bar{t}$ pairs.
- Higgs, EW, flavor physics & QCD, BSM physics (eg. dark matter, EW phase transition, SUSY, LLP,)
- Tracker system is important for those experiments to handle the charged tracks in a wide momentum range

http://cepc.ihep.ac.cn/

Introduction

- Charged particles in a collision event carry > 60% energy, provide the most precise information
- Tracking system is one of the key sub-detector for an experiment
 - Determining the impact parameters and momenta of charged particles
 - Finding secondary vertex of long lived particles
 - Being essential input for Particle Flow reconstruction
- Future collider experiments require extra high momentum resolution: d(1/p) ~ 10⁻⁵ level, i.e, CEPC:

C. Lippmann - 2003

Figure from arXiv:1101.3276

Introduction

- Track reconstruction
- Inference the track parameters from hits

 $(d_0,z_0,\lambda,\phi_0,\kappa)$

with helix:

$$egin{array}{lll} x=&d_0\cos\phi_0+lpha/\kappa(\cos\phi_0-\cos(\phi_0+arphi))\ y=&d_0\sin\phi_0+lpha/\kappa(\sin\phi_0-\sin(\phi_0+arphi))\ z=&z_0-lpha/\kappa an\lambda\cdotarphi \end{array}$$

Momentum resolution determined by various factors Tracker volume, B-field, spatial resolution, efficiency, material budget, layout, ...

- > A complicated optimization problem, if taking into account all above
- > Various technologies
 - > Gaseous detector: less materials, more hits, high tracking efficiency, but poor spatial resolution
- > Silicon pixel, silicon strip: excellent resolution, but less # of hits, more materials, higher cost, ... 2022/9/4-8

Full silicon tracker as a toy example

- Tracker volume R=1.8 meter
- A thin beam pipe at r = 10 mm with $X/X_0=0.15\%$
- # of silicon layers varies
- Spatial resolution: 5 μ m and 7 μ m
- Uniformly distributed along R
- Total X = 5% is fixed: it means that the thickness is
 0.5% if # of layers is 10
- Efficiency = 100%
- Only barrel considered

Method : NIM, A 910 (2018) 127–132

Let's recall least square fit

$$\chi^2 = \sum \frac{(y-y_i)^2}{\sigma_i^2}$$

Neglecting the correlations

$$rac{\partial \chi^2}{\partial p} = 2\sum rac{y-y_i}{\sigma_i^2} rac{\partial y_i}{\partial p} = 0$$

It reaches its minimum when the derivatives are zeros

The Fisher information (I) in our study is

$$I = \sum I_i = \sum \frac{\left(\frac{\partial y_i}{\partial p}\right)^2}{\sigma_i^2} = \sum \left\langle \left[\frac{y - y_i}{\sigma_i^2} \frac{\partial y_i}{\partial p}\right]^2 \right\rangle$$

- Weighted sum of the squared derivatives
- The weights are the inverse squared errors

Stat. error related to

$$\sigma_p^2 \ \geq \ rac{1}{I}$$

Cramer-Rao bound

Two ingredients of I

- Nominator : derivatives of helix to measurements y_i
- Denominator: the σ_i including both Spatial Resolutions (SR) and Multiple Scattering (MS)

Tracking system of the CEPC 4th conceptual detector

Hybrid system of silicon pixel, HV-CMOS, and a drift chamber

Nominator: Squared Derivatives(SD)

SD varies in a very large range ~ 8 orders of magnitudes

Denominator: SR only

- MS: negligible for sufficiently high pt (>10 GeV)
- MS: ~3 order of magnitudes between 1 and 100 GeV at R = 1.8 m

Even taking MS into account, DC contributes much information to low pt tracks \rightarrow derivates dominant.

Accumulated I: the sum of the first *n* layers

Conclusion

gaseous detector does play an important role for low p_t due to its large derivatives

2022/9/4-8

Low p_t tracks gain more information from a gaseous detector ~ 10 times difference

Summary

- Future Higgs factories try to cover very wide energy region: form Z pole to the top threshold
- This study shows
 - $d(1/p_t) \sim 10^{-5}$ is already the limit with B=3 Tesla and R=1.8 meter
 - Silicon tracker is good for high momentum tracks
 - However, low p_t tracks favors a gaseous tracker
- A hybrid tracker system of silicon and gaseous technologies is a good option

Extras

Parameters of the CEPC new tracker

Components	Radius(µm)	$\sigma_{R\phi}(\mu\mathrm{m})$	$\sigma_Z(\mu \mathrm{m})$	Thickness X ₀ %
Beam Pipe	10.5	-	-	0.15
VTX	3 double layers	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.10+0.10+0.10
VTX-shell	1 layer	-	-	0.15
SITs (25x300 mm ²)	3 layers	7.2/7.2/7.2	86.6/86.6/86.6	0.65
DC inner wall	1 layer	-	-	0.104
DC cell (66 x15x15mm)		100	2828	0.0081+0.00413
DC outer wall	1803.0	-	-	1.346
SET (25x300 mm ²)	1811.0	7.2	86.6	0.65

Layout still being under optimization

Introduction

The 4th CEPC conceptual detector Muons to recoil Higgs: 20 ~ 90 GeV PFA HCAL **GEPC** Preliminary 10⁶ 10⁶ **CEPC Preliminary** ana of charges momenta of charges 10⁵ 10^{5} **ECAL** Entries/1.0GeV/c Entries/1.0GeV/c 10^{3} 10³ $e+e- \rightarrow Z \rightarrow qq$ 91GeV 10 $e+e- \rightarrow ZH (\mu\mu H)$ 10 240 GeV **10⁻¹** 10⁻¹ 50 100 Si Tracker 50 Si Vertex 100 P(GeV/c) P(GeV/c)

- Tracking system consists with a silicon pixel vertex detector(VXD), a silicon tracker (SIT and SET) of HV-CMOS, and a drift chamber(DC)
 - > Particle ID with a drift chamber is a key feature for the 4th conceptual detector
 - > Most hadrons (K/pi) of CEPC are below 20 GeV/c
 - Sufficiently good momentum resolution for tracks < 20 GeV/c (flavor and jet study)</p>

Momenta of tracks @ 240 & 91 GeV

More options of DC volume by MarlinTrks

